- •136. Магнітне поле.
- •137. Закон Біо-Савара-Лапласа.
- •138. Напруженість та магнітна індукція. Сила Лоренца.
- •139. Магнітні поля колового та нескінченного струму.
- •140. Сила Ампера.
- •141. Закон циркуляції магнітного поля.
- •142. Соленоїд. Енергія та індуктивність довгого соленоїда.
- •143. Потік магнітного поля. Закон електромагнітної індукції Фарадея. Явище самоіндукції.
- •144. Принцип дії електричного генератора змінного струму.
- •145. Класифікація матеріалів за магнітними властивостями.
- •146. Феромагнетики, парамагнетики та діамагнетики.
- •147. Принципи мас спектрометрії.
- •148. Поведінка провідників у змінному полі.
- •149. Електричні прилади і їх використання.
- •150. Розширення меж використання електричних приладів.
- •151. Променева трубка. Принцип роботи осцилографа. Фігури Ліс-сажу.
- •Математичний вираз для кривої Ліссажу
- •152. Умови виникнення періодичного руху.
- •153. Електричні коливання. Електричний коливальний контур.
- •154. Згасаючі електричні коливання.
- •155. Активний та реактивний опори.
- •156. Коливальний контур.
- •157. Векторні діаграми.
- •158. Електромагнітні хвилі та їх взаємодія з речовиною.
- •159. Фігури Ліссажу.
- •160. Вимушені коливання. Явище резонансу.
- •161. Відкритий коливальний контур. Випромінювання електромагнітних хвиль.
- •162. Рівняння електромагнітної поля.
- •163. Принцип радіозв'язку. Модульований радіосигнал.
- •164. Світлова хвиля. Довжини і частоти хвиль світлового діапазону.
- •165. Енергія світлової хвилі. Вектор Пойтінга.
- •166. Принцип Ферма розповсюдження світлових хвиль. Закони відбиття та заломлення світлових хвиль.
- •167. Коефіцієнти відбиття та проходження електромагнітних хвиль.
- •168.Фотометрія. Сила світла, освітленість, світимість – визначення та одиниці виміру
- •169.Геометрична оптика. Променеве наближення Чотири закони геометричної оптики.
- •170. Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи
- •171. Формула тонкої лінзи той, що збирає і той, що розсіює.
- •172. Побудова оптичних зображень за допомогою тонкої лінзи.
- •173. Інтерференція світла і її умови.
- •174. Інтерференція світла від двох когерентних джерел.
- •175. Інтерференція світла на тонких плівках. Просвітлення оптики.
- •176. Дисперсія світла. Дослідження Ньютона.
- •177. Дифракція світла. Дифракційна ґратка.
- •179. Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •180. Серії випромінювання. Умови квантування.
- •181. Потенціальна яма. Тунельний ефект.
- •182. Потенціальний бар'єр.
- •183. Ефект Компотна.
- •184.Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •185. Закони Столєтова для фотоефекту
- •186. Тиск світла
- •187. Хвилі де Бройля
- •188. Співвідношення невизначеностей Гейзенберга
- •189. Рівняння Шредингера
- •190.Будова атома. Досліди Резерфорда.
- •191.Постулати Бора
- •192.Серії випромінювання.Квантування енергії.
- •193.Атомне ядро
- •194.Радіоактивність
- •195.Закон радіоактивного розпаду
- •196. Радіоактивне випромінювання та взаємодія його з речовиною.
- •197.Взаємозв'язок маси та енергії матерії.
- •198.Ядерний розпад.
- •199. Ланцюгова реакція.
- •200. Термоядерний синтез.
- •200. Термоядерний синтез.
- •201. Атомна енергетика.
- •201. Атомна енергетика.
- •202. Загальні відомості про елементарні частинки.
190.Будова атома. Досліди Резерфорда.
У 1897 р. англійський фізик Дж. Дж. Томсон експериментально відкрив електрон як складову частинку атома, що має найменший електричний заряд. Він припустив, що атом — це позитивно заряджена куля, всередині якої містяться негативно заряджені електрони. Рівномірність їх розподілу в об'ємі кулі та рівність гюзитивного і негативного зарядів забезпечують електричну нейтральність атома.
Модель атома Томсона називавють «пудинговою» — за аналогією з традиційним британський пирогом з родзинками
Проте така модель атома мала свої обмеження і не відповідала дослідним фактам, отриманим на той час фізиками. Запропонувати більш реальну модель атома вдалося лише після дослідів Е. Резерфорда і формулювання квантових постулатів Н. Бором.
Альфа-частинки — це позитивно заряджені частинки, заряд яких дорівнює двом зарядам електрона, а маса приблизно в чотири рази більша за масу атома Гідрогену, тобто це ядра атома Гелію
У 1911 р. англійський фізик Е. Резерфорд, досліджуючи разом зі своїми співробітниками бомбардування альфа-частинками тонких металевих пластинок, встановив, що вони певним чином розсіюються в речовині (мал. 7.1).
Вузький пучок швидких альфа-частинок 1 спрямовувався на тонку золоту чи платинову пластинку 2, за якою розміщувався екран 3, здатний фіксувати їх попадання на екран спалахами. За допомогою спеціального оптичного пристрою 4 можна була спостерігати і вимірювати кут відхилення ф альфачастинок.
Дослід Е. Резерфорда започаткував основи сучасних уявлень про будову атома
Більшість із них рухалася майже прямолінійно (кут відхилення ф становив 1—2°). Проте незначна їх частка відхилялася на більші кути; були зафіксовані навіть такі альфачастинки, які після розсіювання змінювали свій напрямок руху на протилежний (ф > 90°).
Щоб пояснити одержані результати, Е. Резерфорд припустив, що атом має складну будову, схожу на Сонячну систему: всередині його міститься позитивно заряджене ядро, навколо якого обертаються електрони (мал. 7.2).
Його розрахунки довели, що в ядрі зосереджена практично вся маса атома, але його розміри набагато менші за сам атом. Вимірювання показали, що лінійні розміри атома становлять приблизно 10-10 м, а радіус його ядра дорівнює близько 10-15 м. Зрозуміло, що схематичні зображення атомів тут і в інших книгах подаються без дотримання масштабів.
Отже, на підставі одержаних експериментальних даних Е. Резерфорд запропонував ядерну модель атома, яка узгоджувалася з результатами дослідів і пояснювала багато інших явищ, пов'язаних з будовою атома.
Справді, швидкі альфа-частинки легко долають простір електронних оболонок атомів, не зазнаючи з їхнього боку значного впливу, і тому майже не відхиляються від прямолінійної траєкторії руху. Проте коли вони пролітають досить близько від позитивно зарядженого ядра атома, кулонівська взаємодія між ядром і частинками змушує їх викривляти траєкторію і відхилятися на певний кут (мал. 7.3).
Е. Резерфорд на основі законів електромагнітної взаємодії вивів формулу, яка дає змогу обчислити кількість а-частинок, розсіяних на кут ф, залежно від їх енергії і хімічної природи досліджуваного матеріалу. Пізніше ця теоретично виведена формула була експериментально підтверджена й остаточно утвердила в фізиці ядерну модель атома.
