- •Подъемно-транспортное оборудование
- •15.03.02 Технологические машины и оборудование
- •Содержание
- •Введение
- •Раздел 1 Подъемно-транспортное оборудование. Классификация, транспортируемые грузы
- •1.1 Виды и характеристики транспортируемых грузов [2]
- •1.2 Классификация и характеристика подъемно-транспортных машин
- •1.3 Выбор типа транспортирующей машины [2]
- •Раздел 2 Транспортирующие машины с тяговым элементом
- •2.1 Характеристика машин непрерывного транспорта с тяговым элементом Назначение машин непрерывного транспорта [2]
- •Режимы работы, классы использования и условия эксплуатации машин непрерывного транспорта [2]
- •Характеристика производственных, температурных и климатических условий окружающей среды [2]
- •2.2 Сборочные единицы и детали, тяговые элементы, опорные, направляющие, приводные, натяжные, загрузочные и разгрузочные устройства Тяговые органы конвейеров, их конструктивные типы и особенности [2]
- •Тяговые цепи [2]
- •Конвейерные ленты [2]
- •Ходовые опорные устройства [2]
- •Натяжные устройства[2]
- •Приводы конвейеров [2]
- •Бункеры, бункерные затворы [2] Назначение и классификация бункеров
- •Процессы истечения и сводообразования в бункерах
- •Расчет пропускной способности бункеров
- •Бункерные затворы
- •Питатели и дозаторы
- •2.3 Основы теории и расчета транспортирующих машин непрерывного действия [1, с. 41-57]
- •2.3.1 Транспортирующие машины с гибким тяговым элементом в пищевых производствах [2] Ленточные конвейеры [2]
- •Ленточные конвейеры общего назначения с прорезиненной лентой Общее устройство, типы и области применения
- •Элементы конвейеров
- •Мощность приводных блоков выбирается из стандартного ряда: 200, 250, 320, 500, 630, 800, 1000, 1250, 1500 кВт.
- •Расчет ленточных конвейеров
- •Обобщенный расчет ленточного конвейера
- •2.3.2 Цепные конвейеры [2]
- •Пластинчатые конвейеры
- •Пластинчатые конвейеры общего назначения
- •Общее устройство, назначение и области применения
- •Элементы пластинчатых конвейеров
- •Расчет пластинчатых конвейеров
- •Скребковые конвейеры [2]
- •Конвейеры со сплошными высокими скребками
- •Расчет скребковых конвейеров
- •Конвейеры со сплошными низкими скребками
- •Конвейеры с контурными скребками
- •Трубчатые скребковые конвейеры [2]
- •2.3.3 Подвесные конвейеры [2]
- •Подвесные конвейеры. Основные типы и конструктивные особенности, классификация, принцип действия
- •Подвесные грузонесущие конвейеры
- •Расчет подвесных конвейеров
- •Подвесные грузотолкающие конвейеры
- •Подвесные несуще-толкающие конвейеры
- •Подвесные грузоведущие конвейеры
- •Подвесные несуще-грузоведущие конвейеры
- •2.3.4 Элеваторы [2]
- •Ковшовые элеваторы
- •Устройство, назначение, особенности конструкции
- •Способы загрузки и разгрузки
- •Определение полюсного расстояния
- •Особенности расчета ковшового элеватора
- •Тяговый расчет
- •Люлечные и полочные элеваторы
- •Назначение и устройство, особенности конструкции
- •Способы загрузки и разгрузки
- •Раздел 3 Транспортирующие машины без тягового элемента
- •3.1 Винтовые конвейеры [2]
- •Общие сведения, классификация и области применения
- •Устройство и элементы конвейеров
- •Особенности расчета винтовых конвейеров
- •Транспортирующие вращающиеся трубы [2]
- •3.2 Устройства гравитационного транспорта
- •Роликовые конвейеры [2]
- •Неприводные роликовые конвейеры
- •Расчет неприводных роликовых конвейеров
- •Расчет приводных роликовых конвейеров
- •Гравитационные (самотечные) устройства [2]
- •3.3 Установки пневматического и гидравлического транспорта [2]
- •Назначение и общее устройство установок гидравлического транспорта
- •Механическое оборудование установок гидравлического транспорта
- •Назначение и общее устройство установок пневматического транспорта
- •Механическое оборудование установок пневматического транспорта
- •Расчет гидро- и пневмотранспортных установок
- •Расчет установок напорного гидротранспорта
- •Расчет установок самотечного гидротранспорта
- •Расчет установок пневмотранспорта
- •Раздел 4 Грузоподъемные машины [3, 4, 5]
- •4.1 Классификация гпм. Основные характеристики и параметры [3]
- •4.2 Элементы гпм: тросы, барабаны, блоки, звездочки, полиспасты [3] Тросы
- •Барабаны
- •Крановые блоки
- •Полиспасты
- •Звёздочки
- •4.3 Грузозахватные приспособления [3] Крюки и крюковые подвески
- •Стропы из цепей
- •Стропы текстильные
- •Остановы и тормоза
- •Двух-колодочные тормоза
- •Грузоупорные тормоза
- •Домкраты
- •Гидравлические домкраты
- •Реечные домкраты
- •Полиспасты [3, с. 59]
- •Тали и тельферы [3, с. 74] Тали
- •Тельфер (электрическая таль)
- •Привод грузоподъемных машин [4]
- •4.4.1 Механизмы подъема груза [4, с. 33]
- •Механизм подъема груза с ручным приводом
- •Механизм подъема с индивидуальным машинным приводом
- •4.4.2 Механизмы передвижения [4, с.41]
- •Механизм передвижения с гибкой тягой
- •Механизм передвижения с приводными колесами
- •Механизм передвижения тележек мостовых кранов
- •4.4.3 Механизмы поворота [4, с. 48]
- •Момент сопротивления повороту крана от наклона его оси поворота
- •Раздел 5 Погрузочно-разгрузочные машины [5]
- •5.1 Погрузчики универсальные, периодического и непрерывного действия
- •5.2 Машины для разгрузки подвижного состава и автомобильного транспорта
- •5.3 Оборудование для транспортирования и разгрузки порошкообразных материалов
- •Список использованных источников
Механическое оборудование установок пневматического транспорта
Загрузочные устройства (питатели) служат для подачи насыпных грузов в нагнетательный трубопровод. Используются камерные и бескамерные питатели. Камерные питатели выполняются одно- и двухкамерными. У однокамерного питателя, работающего с подачей воздуха вверх, транспортный трубопровод вертикально по оси камеры. В нижней конической части камеры расположены пористые плитки, через которые проходит сжатый воздух, аэрируя нижние слои лежащего в камере груза. Аэрированный материал под давлением воздуха поступает в трубопровод и движется по нему вверх. Камерные питатели не имеют вращающихся в сыпучей среде деталей и поэтому могут применяться при транспортировании абразивных материалов.
Отделители служат для отделения насыпного груза от аэросмеси и располагаются в конечном пункте, а в комбинированных системах и в промежуточных пунктах установки.
Отделители представляют собой резервуар, в котором скорость струи воздуха резко уменьшается, груз выпадает из струи, собирается на дне резервуара и выпускается через затвор. Для более эффективного отделения частиц груза внутри резервуара устанавливают направляющие поверхности из листовой стали, ударяясь о которые, струя аэросмеси изменяет свое направление. Способствуя выпадению из нее частиц груза.
Воздуходувные машины выполняют центробежными или поршневыми в зависимости от давления и условий работы.
Центробежные машины разделяют на вентиляторы и турбомашины; поршневые машины представляют собой с вращательным движением рабочего органа (ротационные) и с возвратно-поступательным движением поршня. Действие центробежных машин основано на центробежном принципе, при котором кинетическая энергия струи воздуха превращается в потенциальную энергию давления.
Расчет гидро- и пневмотранспортных установок
Исходными данными для расчета являются:
объемная или массовая производительность;
характеристика груза;
длина и конфигурация трубопровода.
По заданным исходным данным определяют основные параметры, обеспечивающие устойчивый режим транспортирования груза: скорость движения несущей среды (воды, воздуха); необходимое количество воды или воздуха; диаметр трубопровода; сопротивления движению смеси на различных участках трубопровода и напор или давление для их преодоления; мощность двигателя насосного или воздуходувного агрегата.
При определении скорости, напора или давления несущей среды основными параметрами являются крупность частиц и плотность груза. Группы крупности насыпных грузов:
кусковые (а > 40 мм);
крупнозернистые (а = 6–40 мм);
мелкозернистые (а = 2–6 мм);
грубодисперсные (а = 0,15–2 мм);
тонкодисперсные (а < 0,15 мм).
Расчет для тонкодисперсных, грубодисперсных и кусковых грузов имеет существенные отличия.
Расчет установок напорного гидротранспорта
При расчете гидроустановок для тонкодисперсных грузов критическая скорость:
,
(3.25)
где n = 1 – 1,5 – эмпирический коэффициент, учитывающий влияние степени перемешивания смеси;
а = (ρs – ρв) / ρв – соотношение плотностей частиц груза и несущей среды.
Концентрация тонкодисперсных грузов составляет s = 0,2–0,5. Выбранный диаметр трубы проверяют по условию:
u = 4Vг / (3600 π D2) ≥ uкр, (3.26)
где Vг – расход гидросмеси, м3/ч;
D – диаметр трубы, м;
u – скорость транспортирования, м/с.
Удельные потери напора (м/м) при движении смеси:
H´ = k1 H0 (1 + a s), (3.27)
где k1 = 1,1–1,5 – коэффициент, учитывающий степень перемешивания смеси;
Н0 – удельные потери напора при движении чистой воды со скоростью, равной скорости гидросмеси, м/м;
H0 = ξ u2 / (D g), (3.28)
где ξ – коэффициент гидравлических сопротивлений.
Если трубопровод имеет вертикальные участки высотой Lп, то потребный напор для него больше на величину статического напора при подъеме Нп. При движении смеси вниз он на столько же меньше, поэтому Hп = ± Lп .
Дополнительные потери в трубопроводе составляют около 5%.
При расчете гидроустановок для транспортирования кусковых грузов критическая скорость:
,
(3.29)
где С1 = 8,5–9,5 – эмпирический коэффициент;
f – обобщенный коэффициент трения груза о нижнюю стенку трубы.
Удельные потери напора при движении гидросмеси:
H´ = H0 + f a s. (3.30)
Для предотвращения скопления груза в трубопроводе максимальный размер кусков груза должен быть не более 1/3 диаметра трубы, концентрация должна составлять s = 0,2– 0,25.
При расчете гидроустановок для транспортирования грубодисперсных грузов по полному расчетному напору Нр (м) и производительности V (м3/ч) выбирают насосный агрегат и рассчитывают необходимую мощность двигателя:
,
(3.31)
где kз =1,1–1,2 – коэффициент запаса;
η = 0,7–0,9 – кпд насосного агрегата.
Нр = Нп + Нм , (3.32)
где Нп – статический напор при подъеме;
Нм – дополнительные местные потери.
