- •Теория информации Учебное пособие
- •Введение
- •1. Информационные характеристики источников сообщений
- •Энтропия как мера неопределенности физической системы
- •1.2 Энтропия сложной системы
- •Сложение энтропии независимых систем
- •Условная энтропия
- •1.3. Количественные аспекты информации
- •1.4. Количество информации, как мера снятой неопределенности
- •1.5. Объем информации
- •1.6. Взаимная информация
- •Упражнения
- •Решение
- •Лабораторная работа Свойства энтропии
- •2. Неопределенность непрерывных случайных величин
- •2.1. Энтропия непрерывной случайной величины х
- •2.2. Количество информации для непрерывных систем
- •2.3. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (2.9) в (2.6)
- •При взятии интеграла учтем, что имеется соответствующий табличный интеграл
- •Сравнительная оценка сообщений, передаваемых по нормальному закону и равновероятному закону распределений
- •2.4. Епсилон энтропия (ε-энтропия )
- •3. Передача информации по каналам связи
- •3.1. Источники сообщений
- •3.2. Избыточность информации
- •3.3. Передача информации по каналу связи. Пропускная способность канала
- •Матрица для нахождения условной вероятности
- •Матрица условных вероятностей имеет вид
- •3.4. Пропускная способность непрерывных каналов связи
- •Скорость передачи информации будет равняться
- •Тогда , (3.8) где p мощность сигнала, а n мощность помехи
- •3.5. Согласование скорости выдачи информации, выдаваемой источником, с пропускной способностью канала связи
- •3.6. Согласование оконечных устройств с каналами связи
- •Упражнения
- •Лабораторная работа
- •4. Кодирование информации
- •4.1. Префиксные коды
- •Коды 1,2,3 не обладают свойством префикса, а код 4 обладает.
- •4.2. Основные теоремы кодирования
- •4.3. Оптимальное кодирование
- •4.4. Код Шеннона – Фано
- •Средняя длина полученного кода будет равна
- •4.5. Блочное кодирование
- •4.6. Код Хаффмана
- •4.7. Совмещенный способ построения кода Хаффмана Совмещенный способ построения кода Хаффмана представляет объединение двух процессов: обычного алгоритма построения и метода дерева.
- •Лабораторная работа
- •5. Сжатие информации
- •5.1. Основные понятия
- •5.2. Методы сжатия без потерь
- •Кодирование длин серий (rle - кодирование)
- •Коды Фибоначчи
- •Методы энтропийного сжатия
- •Метод арифметического сжатия
- •Методы контекстного моделирования
- •Словарные методы сжатия
- •5.3. Методы сжатия с потерями
- •6. Помехоустойчивое кодирование
- •6.1 Коды с обнаружением ошибок
- •Код с проверкой на четность.
- •Код Грея записывается следующим образом
- •Обратный переход из кода Грея в двоичный код
- •6.2. Корректирующие коды
- •6.3. Код Хемминга
- •Проверяем ее
- •6.4. Техническая реализация кода Хэмминга
- •6.5 Циклические коды
- •Декодирование циклических кодов
- •Аппаратурная реализация циклических кодов.
- •Пусть на вход подается комбинация 1101001
- •Теперь пусть на вход подается комбинация с ошибкой 1100001
- •Упражнения
- •Лабораторная работа
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 7
- •Задание 8
- •Задание 9
- •Задание 10
- •Задание 11
- •Задание 12
- •Задание 13
- •Задание 14
- •Задание 15
- •Задание 16
- •Задание 17
- •Задание 18
- •Задание 19
- •Задание 20
- •Список литературы
- •Оглавление
3. Передача информации по каналам связи
В данном разделе рассматриваются вопросы передачи информации на самом верхнем уровне, а именно информационные характеристики источников сообщений, каналов связи и приемников информации. Характеристики, позволяющие установить пути повышения эффективности систем передачи информации, и, в частности, определить условия, при которых можно достигнуть максимальной скорости передачи сообщений по каналу связи, как в отсутствие помех, так и при наличии помех.
ИИ
ПИ
Канал связи
Рис. 3.1. Канал связи,
где ИИ - источник информации, ПИ - приемник информации
3.1. Источники сообщений
Источник сообщений это то, что вырабатывает сообщения. Это устная речь, письмо, газеты, книги, сообщения по радио, телевидению, результаты измерений, представленные в виде последовательности цифр и т. д. Сообщение может поступать в форме последовательности какихлибо кодовых знаков.
Нас интересует источник с математической точки зрения, так чтобы можно было отличать источники друг от друга с каких то обобщенных позиций.
С математической точки зрения, под источником информации понимают множество возможных сообщений с заданной на этом множестве вероятностной мерой.
Различают дискретные источники и непрерывные. Различие между ними в том, что элементы в дискретном случае образуют счетное множество, а в непрерывном несчетное множество (континуум).
Дискретный источник определен, если перечислены все его возможные сообщения и указаны их вероятности.
x1, x2, x3, ... , xm
p(x1),
p(x2),
p(x3),
... ,p(xm),
,
Тогда энтропия источника, или количество информации, приходящееся в среднем на одно сообщение, будет составлять:
(3.1)
Это простейшая модель источника сообщений. Реальные источники характеризуются тем, что между элементарными сообщениями существуют статистические связи.
Источник (3.1) является моделью первого, самого грубого приближения. Модель второго приближения учитывает статистику взаимосвязей между соседними буквами p(xj/xi). Модель третьего приближения учитывает связи между тремя соседними буквами p(xk/xixj) и т.д.
Известно, что H(X2/X1)≤H(X), H(X3/X1X2)≤H(X2/X1) и т. д., поэтому энтропии разных степеней приближения составляют монотонно убывающий ряд: H0 H1 H2 H3 ... Hn1 Hn,
где H0 модель источника без учета статистических характеристик H0=log n.
По мере
возрастания номера убывание замедляется,
и вся цепочка стремится к некоторому
пределу
Например, если возьмем 32 буквы русского алфавита, то значение энтропии будет убывать в зависимости от номера модели
H0=log
32=5 бит H1
=4,42бит
Учитывая, что между буквами алфавита существуют взаимосвязи, например в русском языке довольно часто встречаются сочетания: тся, ает, щий и т.д. Но, с другой стороны, невозможно встретить сочетание аь, иы и т.д. То модели более высоких номеров будут иметь все меньшее значение энтропии и в пределе стремиться к минимально возможному значению.
Энтропия характеризует среднее количество информации, приходящееся на один символ сообщения. Если источник выдает n символов в секунду, то скорость выдачи информации будет составлять Rи=nH.
