Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборник задач по ФИЗИКЕ. ОЗО ЭиЭ Часть 1..docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.27 Mб
Скачать

Основные правила приближенных вычислений

  1. Число называется точным или приближенным в зависимости от того, точное или приближенное значение величины оно выражает. Числа, полученные в результате измерения величин, как правило, приближенные.

  2. По правилу, предложенному академиком А.Н. Крыловым, приближенный результат следует записывать так, чтобы последняя его цифра указывала на точность; все цифры, кроме последней, должны быть верными, и лишь в последней (сомнительной) допустима ошибка не более, чем на одну единицу. Например, если длина отрезка l  10,35 м, то это означает, что она измерена с точностью до 0,01 м (или 1 см). Если а  3,1542, то это означает, что число а задано с точностью до 0,0001. (На практике, нередко, при записи приближенных чисел вместо знака «  » пишут знак «  ».)

  3. Значащими цифрами приближенного числа, записанного в десятичной форме, называются все его цифры, начиная с первой слева, отличной от нуля. Например, приближенное число 3,402 имеет четыре значащие цифры; число 0,031 - две значащие цифры. В случае чисел с нулями на конце, например 125 000, возникает вопрос о том, для чего служат нули - для обозначения значащих цифр или для определения разряда остальных цифр. Чтобы избежать путаницы, договоримся о следующем:

    1. если в числе 125 000 шесть значащих цифр, то его надо записывать именно так. Эта запись означает, что оно задано с точностью до 1;

    2. запись 1,25  105 означает, что в данном числе три значащих цифры, т.е. оно задано с точность до 1 000;

    3. если в числе 125 000 четыре значащих цифры, то запись будет такой: 1,250  105 , т.е. число задано с точностью до 100.

  4. При округлении данного числа с точностью до n - го разряда последняя сохраняемая цифра (цифра n-го разряда) не меняется, если цифра, следующая за ней, меньше 5, и увеличивается на 1, если цифра, следующая за ней, не меньше 5.

  5. При сложении и вычитании приближенных чисел следует сохранять столько десятичных знаков, сколько их в приближенном числе, имеющим наименьшее число десятичных знаков (т.е. в числе с наибольшей абсолютной погрешностью). Именно этой наибольшей погрешностью и определяется погрешность суммы или разности.

Пример.

Найти сумму приближенных чисел 2,38035; 0,0342; 51,247018 и 5,3

2,38035

+ 0,0342

+ 51,247018

5,3

58,961568  59,0

  1. Более рационально поступать так: все приближенные числа округляют с точностью на 1 десятичный знак больше, чем в слагаемом с наименьшим числом десятичных знаков, складывают их и результат округляют в соответствии с правилом 5, т.е.

2,38

+ 0,03

+ 51,25

5,3

58,96  59,0

  1. При умножении и делении приближенных чисел в результате следует сохранить столько значащих цифр, сколько их содержит приближенное число, имеющее наименьшее количество значащих цифр. На практике, чтобы не делать лишней работы, поступают так: данные числа округляют с точностью на один порядок выше, чем требует правило 5. Производят с ними действия умножения или деления и результат округляют в соответствии с правилом 5.

  2. При возведении приближенных чисел в степень в результате следует сохранить столько значащих цифр, сколько их имеет основание степени.

  3. При извлечении корней в результате следует оставить столько значащих цифр, сколько их содержится в подкоренном выражении.

  4. Если следует выполнить различные действия над приближенными числами, заданными с разной степенью точности, то предварительно их все округляют, сохраняя лишь одну запасную цифру по сравнению с тем числом, которое задано с наименьшей точностью. Аналогично округляются результаты всех промежуточных действий. В конечном результате запасная цифра отбрасывается по правилам округления.

Следует всегда помнить и иметь в виду, что для физической задачи важна правильность не только хода выполнения решения и численного значения ответа, но и качественная сторона решения. Главное правило: научиться решать задачи, можно только их решая.