- •Теоретическая часть
- •1. Основные понятия
- •Понятие о нижней и верхней цене игры. Решение игры в чистых стратегиях
- •2. Строго детерминированные игры
- •3. Нестрого детерминированные игры
- •Игра с матрицей h2х2.
- •3.2. Графическое решение матричной игры
- •Алгоритм геометрического решения игры 2×n
- •Алгоритм геометрического решения игры м×2
- •6. Игры с природой
- •6.1. Принятие решений в условиях риска
- •6.1.1 Критерий Баейса относительно выигрышей
- •6.1.2 Критерий Баейса относительно рисков
- •6.2. Частные случаи критерия Баейса
- •6.2.1 Критерии Лапласа относительно выигрышей и относительно рисков
- •6.2.2 Критерии относительных значений вероятностей состояний природы с учетом выигрышей и с учетом рисков
- •Решение задач в условиях неопределенности
- •7. Принятие решений в условиях неопределенности
- •7.1 Обобщенный критерий пессимизма-оптимизма Гурвица относительно выигрышей с коэффициентами 1, 2 , ... n
- •7.2 Частные случаи обобщенного критерия пессимизма-оптимизма Гурвица относительно выигрышей
- •7.2.1 Критерий Вальда (критерий крайнего пессимизма)
- •7.2.2 Максимаксный критерий (критерий крайнего оптимизма)
- •7.2.3. Критерий пессимизма-оптимизма Гурвица относительно выигрышей с показателем оптимизма (0,1)
- •7.3. Обобщенный критерий пессимизма-оптимизма Гурвица относительно рисков с коэффициентами 1, 2 , ... n
- •7.4 Частные случаи обобщенного критерия пессимизма-оптимизма Гурвица относительно рисков
- •7.4.1.Критерий пессимизма-оптимизма Гурвица относительно рисков с показателем оптимизма (0,1)
- •7.4.2. Критерий Сэвиджа (критерий крайнего пессимизма)
- •7.4.3. Миниминный критерий (критерий крайнего оптимизма)
- •Библиографический список Основная литература
- •Дополнительная литература
- •Электронные ресурсы
- •Зависимость дохода предприятия
- •Задачи линейного программирования
Зависимость дохода предприятия
Товар |
Погодные условия |
||
|
Дожди (B1) |
Облачно (B2) |
Ясно (B3) |
Пальто(A1) |
6 |
9 |
4 |
Куртки (A2) |
10 |
6 |
2 |
Ветровки (A3) |
1 |
2 |
8 |
Тогда платёжная матрица A имеет вид:
А
=
Элемент матрицы A — (aij) показывает, какой доход может получить фирма с, если она будет выпускать товар i (i =1, 2, 3), а погода будет находиться в состоянии j (j = 1, 2, 3).
Необходимо определить пропорции, в которых предприятие должно выпускать продукцию из имеющегося материала, чтобы получить максимальный гарантированный доход вне зависимости от погодных условий.
Данная задача может быть сведена к антагонистической игре: в качестве первого игрока выступает предприятие, а в качестве второго — природа. Предположим, что природа может вести себя таким образом, чтобы минимизировать выгоду фирмы, преследуя, таким образом, противоположные интересы (это предположение позволяет оценить доход фирмы при максимально неблагоприятных погодных условиях). В этом случае фирма имеет в своём распоряжении три чистые стратегии:
1. производить только пальто;
2. производить только куртки;
3. производить только ветровки;
Как игрок, природа может использовать три возможные стратегии:
1. дождливую погоду (B1);
2. облачную погоду (B2);
3. ясную погоду (B3).
Решение:
1. Проанализируем платёжную матрицу A.
А =
Матрица A не имеет доминируемых стратегий, следовательно, упростить ее нельзя
2. Проверим, имеет ли данная игра седловую точку.
Найдём нижнюю и верхнюю цену игры:
V*=maxi minjaij = 4.
V*=minjmaxiaij = .
V* ≠V*, поэтому данная антагонистическая игра не имеет седловой точки, а, следовательно, и решения в чистых стратегиях.
3. Решение игры следует искать в смешанных стратегиях. Сведём ее к задаче линейного программирования. Если предприятие применяет свою оптимальную смешанную стратегию P*, а природа применяет последовательно свои чистые стратегии, то математическое ожидание дохода, который фирма может получить, будет не меньше цены игры V. Следовательно, должна выполняться следующая система неравенств:
Разделим каждое из неравенств, входящих в систему на V и введём новые переменные:
y1
=
; y2
=
; y3
=
Поскольку p1+ p2+ p3= 1, новые переменные удовлетворяют условию:
y1 + y2 + y3 = 1/V
В результате получим новую систему неравенств:
Поскольку цель первого игрока — максимизация его выигрыша, а математическое ожидание его выигрыша не меньше цены игры, он будет стремиться максимизировать цену игры, что эквивалентно минимизации величины 1/V.
Таким образом, для первого игрока задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
F(yi) = y1 + y2 + y3 → min
при следующих функциональных ограничениях:
и прямых ограничениях:
y1 ≥ 0, y2≥ 0, y3≥ 0
Далее рассмотрим второго игрока — природу. Если будет применять свою оптимальную смешанную стратегию Q*, а первый игрок — предприятие будет последовательно применять свои чистые стратегии, то математическое ожидание проигрыша второго игрока не будет превышать цены игры. Следовательно, должна выполняться следующая система неравенств:
Разделим каждое из неравенств, входящих в систему на V и введём новые переменные:
x1=
; x2=
; x3=
Поскольку q1+ q2+ q3= 1, новые переменные удовлетворяют условию:
x1 + x2 + x3 = 1/V
В результате получим новую систему неравенств:
Поскольку цель второго игрока — минимизация проигрыша, а математическое ожидание его проигрыша не больше цены игры, то второй игрок будет стремиться минимизировать цену игры, что эквивалентно максимизации величины 1/V.
Таким образом, для природы задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
F'(xi) = x1 + x2 + x3 → max
при следующих функциональных ограничениях:
и прямых ограничениях:
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
Таким образом, для того чтобы найти оптимальную смешенную стратегию второго игрока, необходимо также решить задачу линейного программирования.
Задачи обоих игроков свелись к паре двойственных задач линейного программирования:
Таблица 1.
