- •№ 1.2А «изучение законов прямолинейного движения на машине атвуда (вариант 1)»
- •II. Описание установки
- •I Рисунок 5 – Машина Атвуда (вариант 1) II. Методика измерений и расчетные формулы.
- •V. Таблицы результатов измерений.
- •VI. Обработка результатов опытов.
- •На машине атвуда» (вариант 2)
- •II.Описание установки
- •III.Методика измерений и расчетные формулы
- •IV.Порядок выполнения работы
- •V.Таблицы результатов измерений
- •VI.Обработка результатов опытов
- •№ 1.1 «Изучение движения тел по наклонной плоскости»
- •II. Описание установки
- •III. Методика измерений и расчетные формулы
- •IV. Порядок выполнения работы
- •V. Таблицы измерений
- •VI. Обработка результатов измерений
- •№ 1.7А «соударение шаров»
- •II. Описание установки
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы
- •№ 1.3, 1.3А «эксперементальное определение момента инерции вращающейся системы»
- •II. Описание установки
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
- •V. Таблицы результатов измерений.
- •VI. Обработка результатов измерений.
- •Методом крутильных колебаний» (вариант 1)
- •II. Описание установки
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
- •V. Таблицы результатов измерений.
- •VI. Обработка результатов измерений.
- •II.Описание установки
- •III.Методика измерений и расчетные формулы
- •IV.Порядок выполнения работы
- •V.Таблицы результатов измерений Задание 1.
- •Задание 2.
- •VI.Обработка результатов измерений
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
- •V. Таблицы результатов измерений.
- •VI. Обработка результатов измерений.
- •II. Описание установки
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
- •V. Таблицы результатов измерений.
- •VI. Обработка результатов измерений.
- •(Вариант 2)
- •II.Описание установки.
- •III.Методика измерений и расчетные формулы
- •IV.Порядок выполнения работы
- •V.Таблицы результатов измерений
- •VI.Обработка результатов измерений
- •II. Описание установки
- •III. Методика измерений и расчетные формулы
- •IV. Порядок выполнения работы
- •II. Описание установки
- •III. Методика измерений и расчетные формулы
- •IV. Порядок выполнения работы
- •II. Описание установки
- •III. Методика измерений и расчетные формулы
- •IV. Порядок выполнения работы
- •II. Описание установки.
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
- •I I. Описание установки
- •III. Методика измерений и расчетные формулы.
- •IV. Порядок выполнения работы.
II. Описание установки
Работа выполняется на установке ФМ-15, общий вид которой представлен на рисунке 15. Основным элементом установки является крутильный маятник, представляющий собой металлическую рамку 1, подвешенную на стальной нити 2. Нить подвеса закреплена вертикально в натянутом состоянии на стойке 3 с основанием 4. Рамка может совершать крутильные колебания вокруг вертикальной оси, проходящей через ее ось симметрии. На ней имеются места для крепления двух дополнительных грузов 5 симметрично относительно оси. К ней же крепится «мишень» 6 в виде диска, поверхность которого покрыта тонким слоем пластилина, флажок 7 для контроля ее колебаний и противовес 8. «Пулей» служит металлическая втулка. К стойке на кронштейне 9 крепится «пистолет», состоящий из направляющего стержня с пружиной 10 и спускового устройства 11. К стойке также на кронштейне крепится фотодатчик 12. Регистрация числа и времени колебаний осуществляется блоком электронным ФМ-1/1 (на рис. 15 не показан).
Если освободить пулю от стреляющего устройства, то она вклеится в пластилин на мишени крутильного маятника и вызовет отклонение последнего на некоторый угол от положения равновесия. Кинетическая энергия маятника, полученная им от пули, постепенно будет переходить в потенциальную энергию упругой деформации закручивающейся нити. Затем начнется процесс перехода потенциальной энергии в кинетическую и т.д. Маятник будет совершать гармонические крутильные колебания, период которых значительно больше времени соударения.
III. Методика измерений и расчетные формулы.
Систему пуля – маятник можно считать замкнутой. Применим к ней закон сохранения момента импульса:
,
где m и υ – масса и скорость пули соответственно; r – расстояние от оси вращения маятника до центра масс пули в месте ее вклеивания; J – момент инерции маятника; Jп – момент инерции пули относительно оси вращения маятника; ω0 – начальная угловая скорость маятника.
Поскольку Jп<<J, то
.
(1)
Из (1) следует, что для определения скорости пули необходимо найти момент инерции и начальную угловую скорость маятника; величины m и r могут быть измерены прямо.
Для определения ω0 воспользуемся законом сохранения механической энергии и основным законом динамики вращательного движения.
Маятник совершает крутильные колебания под действием момента силы упругости нити, пропорционального углу поворота маятника φ:
,
где k – модуль кручения. Знак минус указывает на то, что псевдовектор М направлен против псевдовектора φ отклонения маятника.
Элементарная работа против сил упругости по закручиванию нити на малый угол dφ равна:
.
После
интегрирования получаем:
.
Если пренебречь незначительными потерями на трение, то можно записать:
, или
, (2)
где φmax — максимальный угол отклонения маятника от положения равновесия.
По основному закону динамики вращательного движения:
,
или
.
Частным решением этого уравнения является
,
в чем можно убедиться непосредственной подстановкой.
Величина
в последнем выражении является циклической
частотой колебаний, которая по определению
равна
.
Поэтому маятник будет совершать
гармонические колебания с периодом
.
(3)
Подставив
в формулу (3) выражение для
из
формулы (2), получим следующее выражение
для начальной угловой скорости маятника:
. (4)
Для определения скорости пули требуется также найти момент инерции, для определения которого, в свою очередь, необходимо найти жесткость подвеса k. Величину k можно исключить, если измерить сначала период колебаний пустой рамки (T0), а затем установить на рамку цилиндрические грузы 5 (см. рис. 1) и измерить период колебаний рамки с грузами (T1). Решая совместно уравнения вида (3) для пустой и нагруженной рамки, получим момент инерции пустой рамки:
,
(5)
где mгр – масса груза, r1 – радиус груза, ℓ1 – расстояние от оси вращения рамки до оси груза.
Момент инерции нагруженной рамки составляет:
.
(6)
