Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МП КП ДВС.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
16.03 Mб
Скачать

3) Расчет усилий зажима

Расчет зажимных сил осуществляем по наиболее неблагоприятным условиям работы приспособления, которым соответствуют наибольшие нагрузки, действующие на заготовку в процессе ее обработки.

При контурном фрезеровании шатуна обычно используют цилиндрические фрезы, длина рабочей части которых должна перекрывать всю ширину фрезеруемой поверхности.

Для обрабатываемого шатуна наибольшая ширина фрезерования равна ширине наружной поверхности кривошипной головки Bкр=146 мм. Поэтому для обеспечения достаточной жесткости инструмента выбираем цилиндрическую концевую фрезу с диаметром режущей части Dфр=63 мм и длиной 200 мм [13] (таб. 67, с. 174-175) с винтовыми зубьями (для снижения детонационных явлений) в количестве Z=8 шт.; материал режущих элементов – твердый сплав марки Т15К6.

Принимаем максимальную глубину чернового фрезерования t=3 мм. Рекомендуемая подача при черновом фрезеровании и глубине t=3 мм для материала Т15К6 составляет Sz=0,15 мм/зуб [13] (таб. 36, с. 285).

Определим расчетное значение скорости резания [13] (с. 282):

м/мин, (1)

где CV – постоянная, соответствующая виду и условиям обработки: для фрезерования цилиндрической твердосплавной фрезой конструкционной стали CV=234 [13] (таб. 39, с. 286);

q, m, x, y, n, p – эмпирические показатели степеней;

– общий поправочный коэффициент, учитывающий изменяемые условия обработки, где

– коэффициент, учитывающий свойства обрабатываемого материала [13] (таб. 1, с. 261):

nV=1; KГ=0,8 – для режущего материала из твердого сплава [13] (таб. 2, с. 262);

σВ=780 – временное сопротивление разрыву для обрабатываемого материала (материал шатуна – сталь 18Х2НЧМА) в нормализованном состоянии [11] (с. 280-281);

KПV – коэффициент, учитывающий состояние поверхностного слоя заготовки: для поковки KПV=0,8 [13] (таб. 5, с. 263);

KИV – коэффициент, учитывающий вид инструментального материала: для Т15К6 при обработке конструкционной стали KИV=1,0 [13] (таб. 6, с. 263);

KТИ – коэффициент, учитывающий количество одновременно работающих инструментов: для одноинструментальной обработки KТИ=1,0 [13], (таб. 7, с. 264);

KТС – коэффициент, учитывающий количество станков, обслуживаемых одним рабочим: для одного обслуживаемого станка KТС=1,0 [13] (таб. 8, с. 264).

CМV=234; q=0,44; x=0,24; y=0,26; u=0,1; p=0,13; m=0,13 [13] (таб. 39, с. 286);

T=180 мин – стойкость твердосплавного инструмента при черновом фрезеровании [43] (таб. 40, с. 280).

м/мин

Определим расчетное значение частоты вращения шпинделя станка:

мин-1.

Принимаем действительное значение частоты вращения мин-1, т.к. станок с ЧПУ и имеет бесступенчатое регулирование скоростных параметров.

Определяем силу резания [13] (с. 282):

, (2)

где Cp – постоянная, соответствующая виду и условиям обработки: для фрезерования цилиндрической твердосплавной фрезой конструкционной стали Cp=12,5 [13] (таб. 41, с. 291);

x=0,85; y=0,75; u=1,0; q=0,73; w=-0,13 – эмпирические показатели степеней для этих же условий обработки [13] (таб. 41, с. 291);

, n=0,75 – поправочный коэффициент и показатель степени для обработки фрезерованием стали с кГс/см2 [13] (таб. 9, с. 264).

кГс

Для определения усилий зажима и параметров исполнительного гидроцилиндра составляем расчетную схему (рис. 7.5).

Сила резания PZ будет стремиться развернуть заготовку относительно точки О1 и одновременно сместить ее в направлении действия вектора . Очевидно, критическое расположение инструмента относительно заготовки будет соответствовать его расположению в точке А (рис. 7.5,б), т.к. в этом случае на заготовку будет действовать максимальный крутящий момент МКР, стремящийся развернуть ее относительно точки О1, тогда как сдвигающая сила PS будет одинаковой в любом месте контура шатуна.

При этом составляющая силы PZ будет создавать крутящий момент МКР, а составляющая – сдвигающую силу PS, т.е.

(3)

Для упрощения расчетов можно пренебречь разницей коэффициентов трения в поступательном fs и тангенциальном fτ направлениях между контактирующими поверхностями шатуна (торцами его головок) и буртов установочных пальцев, считая их одинаковыми и для пары сталь-сталь равными fs=fτ=f=0,15 [12] (таб. 21, с. 98). При таком условии доли и будут равными, т.е.

(4)

Заготовка удерживается в приспособлении в неподвижном состоянии силами трения FТР и между контактирующими поверхностями шатуна (торцами его головок) и торцовыми поверхностями опорных буртов пальцев соответственно в опорах О и О1.

При этом в каждой из опор часть силы трения ( ) будет создавать противодействующий крутящий момент МПР ( ), компенсирующий МКР, а другая часть – ( ) будет компенсировать сдвигающую силу PS.

Таким образом неподвижность заготовки будет обеспечиваться условием:

(5)

Учитывая, что

; (6)

и

;

; (7)

,

где ( ) и ( ) составляющие зажимных сил, создающие, соответственно, силы трения ( ) для противодействия моменту МКР и силы трения ( ) для противодействия сдвигающей силе PS, т.е. в каждой из опор:

,

выражение (5) запишется в виде:

. (8)

Уравнения статического равновесия системы получим, введя коэффициенты запаса надежности:

, (9)

где KЗ.S, KЗ.M – коэффициенты запаса надежности соответственно противодействию сдвигающей силе и крутящему моменту.

Поскольку используется гидроцилиндр дифференциального типа, то усилия зажима обеих головок шатуна будут одинаковыми, т.е.

Q=Q1, (10)

при этом доли ( ) и ( ), затрачиваемые соответственно на создание сил трения ( ) и ( ) также будут одинаковыми в обеих опорах.

Тогда система (9) запишется в виде:

. (11)

Отсюда определяем составляющие и :

(12)

, (13)

Принимая KЗ.S=KЗ.M=1,5, а также учитывая фактические значения R=750 мм, R1=100 мм, R2=878 мм, определим числовые значения и :

кГс,

кГс.

Суммарная сила зажима на каждом штоке:

кГс.

а)

б)

Рис. 7.5. Расчетная схема для определения усилий зажима и параметров гидроцилиндра

С учетом передаточного отношения клинового механизма с углом клина α=10º усилие на штоке гидроцилиндра будет равно:

кГс.

Приняв рабочее давление гидроцилиндра P=5 МПа ( кГс/см2), определим требуемый диаметр гидроцилиндра:

см=57,8 мм.

Принимаем размер рабочего диаметра гидроцилиндра (диаметра его поршня dП) dГЦ=60 мм.