Вариант 1
На сельскохозяйственные работы из трех бригад выделяют по одному человеку. Известно, что в первой бригаде 15 человек, во второй – 12, в третьей – 10 человек. Определить число возможных групп по 3 человека, если известно, что на сельскохозяйственные работы может быть отправлен каждый рабочий.
Из пяти букв разрезной азбуки составлено слово «песня». Ребенок, не умеющий читать, рассыпал буквы и затем собрал в произвольном порядке. Найти вероятность того, что у него снова получилось слово «песня».
В телестудии три телевизионные камеры. Вероятности того, что в данный момент камера включена, равны соответственно 0,9; 0,8; 0,7. Найти вероятность того, что в данный момент включены: а) две камеры; б) не более одной камеры; в) три камеры.
20% приборов монтируется с применением микромодулей, остальные – с применением интегральных схем. Надежность прибора с применением микромодулей – 0,9, интегральных схем – 0,8. Найти: а) вероятность надежной работы наугад взятого прибора; б) вероятность того, что прибор – с микромодулем, если он был исправлен.
Всхожесть семян некоторого растения составляет 80%. Найти вероятность того, что из 6 посеянных семян взойдет: а) три; б) не менее трех; в) четыре.
Вероятность появления события в каждом из независимых испытаний равна 0,25. Найти вероятность того, что событие наступит 50 раз в 243 испытаниях.
Найти закон распределения указанной дискретной случайной величины
и ее функцию распределения
.
Вычислить математическое ожидание
,
дисперсию
и среднее квадратичное отклонение
.
Построить график функции распределения
.
Автомобиль должен проехать по улице, на которой установлено четыре независимо работающих светофора. Каждый светофор с интервалом в 2 минуты подает красный и зеленый сигналы; случайная величина – число остановок автомобиля на этой улице.
Дана функция распределения случайной величины . Найти плотность распределения вероятностей
,
математическое ожидание
,
дисперсию
и вероятность попадания случайной
величины
на отрезок
.
Построить графики функций
и
.
Валик, изготовленный автоматом, считается стандартным. Если отклонение его диаметра от проектного размера не превышает 2 мм. Случайные отклонения диаметров валиков подчиняются нормальному закону со средним квадратичным отклонением 1,6 мм и математическим ожиданием, равным 0. Сколько стандартных валиков (в процентах) изготавливает автомат?
Для определения качества производимой заводом продукции отобрано наугад 2 500 изделий. Среди них оказалось 50 с дефектами. Частота изготовления бракованных изделий принята за приближенное значение вероятности изготовления бракованного изделия. Определить, с какой вероятностью можно гарантировать, что допущенная при этом абсолютная погрешность не будет превышать 0,02.
Вариант 2
Пять пассажиров садятся в электропоезд, состоящий из 10 вагонов. Каждый пассажир с одинаковой вероятностью может сесть в любой из 10 вагонов. Определить число всех возможных вариантов размещения пассажиров в поезде.
Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера. Полученные кубики тщательно перемешаны. Определить вероятность того, что наугад извлеченный кубик будет иметь две окрашенные грани.
На заводе железобетонных изделий изготавливают панели, 90% из которых – высшего сорта. Какова вероятность того, что из трех наугад выбранных панелей высшего сорта будут: а) три панели; б) хотя бы одна панель; в) не более одной панели?
Детали попадают на обработку на один из трех станков с вероятностями, равными соответственно 0,2; 0,3; 0,5. Вероятность брака на первом станке равна 0,02, на втором – 0,03, на третьем – 0,01. Найти: а) вероятность того, что случайно взятая после обработки деталь – стандартная; б) вероятность обработки наугад взятой детали на втором станке, если она оказалась стандартной.
В семье четверо детей. Принимая равновероятным рождение мальчика и девочки, найти вероятность того, что мальчиков в семье: а) три; б) не менее трех; в) два.
Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что в 144 испытаниях событие наступит 120 раз.
Найти закон распределения указанной дискретной случайной величины и ее функцию распределения . Вычислить математическое ожидание , дисперсию и среднее квадратичное отклонение . Построить график функции распределения .
Производят три выстрела по мишени. Вероятность поражения мишени первым выстрелом равна 0,4, вторым – 0,5, третьим – 0,6; случайная величина – число поражений мишени.
Дана функция распределения случайной величины . Найти плотность распределения вероятностей , математическое ожидание , дисперсию и вероятность попадания случайной величины на отрезок . Построить графики функций и .
При определении расстояния радиолокатором случайные ошибки распределяются по нормальному закону. Какова вероятность того, что ошибка при определении расстояния не превысит 20 м, если известно, что систематических ошибок радиолокатор не допускает, а дисперсия ошибок равна 1 370 м2?
Дисперсия каждой из 4 500 независимых и одинаково распределенных случайных величин равна 5. Найти вероятность того, что среднее арифметическое этих случайных величин отклонится от своего математического ожидания не более чем на 0,04.
