- •Введение
- •Лекция 1 Предмет, структура, проблемы, задачи, методы науки экология
- •Предмет экологии
- •Антропоцентрический, технологический, технократический подход к решению вопроса о месте человека в природе
- •Биоцентрический или экоцентрический подход к проблеме взаимоотношений человека и природы
- •Структура науки экологии
- •Проблемы экологии
- •Задачи экологии
- •Методы экологии
- •Лекция 2 Среда обитания, экологические факторы
- •Экологические факторы
- •Закономерности воздействия абиотических экологических факторов на организмы. Адаптация
- •Среда обитания
- •Закономерности действия биотических экологических факторов («Биотические отношения»)
- •Экологическая ниша
- •Лекция 3 Экологические системы
- •Экологическая система
- •Биотическая структура экосистемы
- •Биотический круговорот веществ и энергии в природных экосистемах
- •Круговорот углерода
- •Круговорот кислорода
- •Поток энергии через экосистемы
- •Пищевые (трофические) цепи и сети
- •Развитие и устойчивость экосистем. Сукцессия
- •Агроэкосистемы
- •Лекция 4 Биосфера
- •Понятие биосферы, границы и состав биосферы
- •Функционирование биосферы
- •Эволюция биосферы Изменения окружающей среды на земле всегда происходили параллельно с эволюцией жизни. Два этих процесса в биосфере развивались параллельно и взаимосвязано:
- •Возникновение круговорота органических соединений углерода.
- •Увеличение биологического многообразия и усложнение строения и функциональной организации живых существ и биосферы в целом.
- •Лекция 5 Законы экологии
- •Закон всеобщей связи вещей и явлений – принцип целостности
- •Закон больших чисел.
- •Принцип Ле Шателье
- •Закон сохранения массы вещества
- •Закон ограниченности ресурсов
- •Закон падения природно-ресурсного потенциала
- •Следствия законов сохранения, всеобщей связи и принципа Ле Шателье
- •Лекция 6 Антропогенное воздействие человека на окружающую природную среду
- •Воздействие хозяйственной деятельности человека на природу на разных стадиях развития человеческого общества
- •Виды воздействия человека на природу
- •Природные ресурсы
- •Виды загрязнения человеком природной среды
- •Устойчивость загрязнений (загрязнителей) в окружающей среде
- •Нормирование загрязнений окружающей среды
- •Лекция 7 Антропогенное воздействие на атмосферу
- •Строение и состав и значение атмосферы для биосферы
- •Основные вещества, загрязняющие атмосферу
- •Основные загрязнители атмосферы
- •Влияние оксидов серы и азота на атмосферу
- •Нарушение озонового слоя атмосферы (озоновые дыры)
- •Парниковый эффект и изменения климата
- •Аэрозольный эффект. Смог.
- •Лекция 8 Антропогенное воздействие на водные системы
- •Вода в биосфере
- •Потребление пресной воды
- •Водные ресурсы России
- •Источники, виды и последствия антропогенного загрязнения природных вод Источники антропогенного загрязнения природных вод:
- •Требования к питьевой воде:
- •Пдк некоторых примесей в питьевой воде, мг/л
- •Загрязнение вод России
- •Загрязнение морей
- •Лекция 9 Загрязнение поверхности земли
- •Земельные ресурсы
- •Земля – базис продовольственного обеспечения
- •Земля России
- •Загрязнение земли
- •Лекция 10 Экологические проблемы большого города
- •1. Состав, разнообразие и напряженность экологических проблем города
- •2. Основные экологические проблемы, связанные с урбанизацией
- •3. Загрязнение городского воздуха
- •4. Проблема водоснабжения
- •5. Проблема утилизации тбо
- •6. Геоэкологические проблемы города
- •7. Преобразование биосферной компоненты в условиях города
- •Лекция 11 Экологическая безопасность, экологическое нормирование, экологический риск
- •Экологические и гигиенические нормативы
- •Экологическое нормирование с использованием пдк
- •Экологический риск
- •Общие положения охраны биосферы от загрязнений
- •Очистка воздуха от загрязнений
- •Очистка выбросов от пыли и аэрозолей
- •Очистка воздуха от газо- и парообразных загрязнений
- •Очистка выбросов автотранспорта
- •Лекция 13 Охрана биосферы от загрязнений – методы очистки воды от загрязнений
- •Общие сведения
- •Гидромеханические методы очистки сточных вод
- •Химические методы
- •Физико-химические методы
- •Электрохимические методы
- •Биохимические методы
- •Переработка водных суспензий (пульп)
- •Лекция 14 Охрана биосферы от загрязнений – очистка суши от загрязнений
- •Общие сведения
- •Охрана почв от загрязнений
- •Утилизация и переработка твердых отходов
- •Проблема отложенного отхода
- •Лекция 15 Экологический кризис, пути выхода из экологического кризиса, международное сотрудничество по преодолению экологического кризиса
- •Естественная сторона экологического кризиса
- •Социальная сторона экологического кризиса
- •Сдержать рост населения.
- •Снизить природоемкость экономики.
- •Международное сотрудничество по преодолению экологического кризиса
- •Перспективы человечества по преодолению глобального экологического кризиса
- •Концепция экоразвития
- •Концепция устойчивого развития
- •Концепция Ноосферы
- •Парадигма н.Н. Моисеева
- •Критерий в.Г. Горшкова
Электрохимические методы
Основы электрохимических методов. Для проведения электрохимических процессов используют электролизеры. В простейшем виде это два электрода (электронные проводники), погруженные в раствор электролита (ионный проводник), который находится в ванне. Через электроды пропускают обычно постоянный ток. На катоде, т.е. электроде, подсоединенном к отрицательному полюсу источника напряжения, протекают процессы электрохимического восстановления положительно заряженных ионов раствора, т.е. катионов. На инертном аноде, т. е. электроде, подсоединенном к положительному полюсу источника напряжения, протекают процессы электрохимического окисления отрицательно заряженных ионов раствора, т.е. анионов. На растворимом аноде происходит окисление материала анода с переходом его растворимых соединений в раствор. Процессы электрохимического восстановления и окисления количественно описываются известным законом Фарадея.
В зависимости от природы электрохимических процессов, используемых для удаления примесей из сточных вод, различают методы электрохимического окисления и восстановления, электрокоагуляции и флотации, электродиализа.
Электрохимическое окисление и восстановление. Методы электролиза применяют при небольших расходах сточных вод, содержащих повышенные концентрации примесей. Минимальная концентрация солей должна быть не менее 0,5 г/л, чтобы электропроводность сточной воды была достаточной для электролиза. Анодным окислением можно очищать сточные воды от цианидов, аминов, альдегидов, сульфидов, меркаптанов, красителей, нитросоединений, превращая их в СО2, воду, азот, аммиак. Катодным восстановлением можно удалять ионы тяжелых металлов: свинца, ртути, меди, мышьяка, хрома и т. п.
В качестве анодов применяют нерастворимые материалы: графит, магнетит, титан. Катоды: легированная сталь, сплавы железа, свинца, цинка. Для разделения катодного и анодного пространства применяют керамические, полиэтиленовые, стеклянные диафрагмы. Электропроводность раствора увеличивают добавлением 5–10 г/л NaCl. Анодная плотность тока составляет 100–150 А/м2, межэлектродное пространство – 3 см. Эффективность очистки – до 80–100%.
Электрокоагуляция и электрофлотация. В этом методе используют растворимые аноды из железа (стали), алюминия, которые при анодном окислении образуют ионы Fe3+ и Al3+.
Катионы железа и алюминия: а) коагулируют заряженные коллоиды, б) образуют в воде гидроксиды железа или алюминия в виде хлопьев, в) способствуют соосаждению примесей на них. Если напряжение на электролизере достаточно для параллельного разложения воды, то пузырьки газов водорода H2 и кислорода O2, образующиеся при электролизе на катоде и аноде, будут обеспечивать флотацию примесей. Такие электролизеры с растворимыми электродами называют электрокоагуляционно-флотационными.
Электроды в электролизерах располагают в виде набора пластин с расстоянием между ними для стальных электродов 5–10 мм, для алюминиевых – 12–15 мм. Анодная плотность тока 150–250 А/м2 для стальных электродов и 80–120 А/м2 для алюминиевых электродов. Скорость движения воды между электродами от 0,03 до 0,5 м/с. По направлению движения воды и флотирующихся газов электрофлотаторы разделяют на прямо- и противоточные, по располо-жению электродов – на горизонтальные и вертикальные.
Электрокоагуляцию с алюминиевыми анодами применяют для обработки сточных вод, содержащих эмульсии масел, жиров и нефтепродуктов с начальной концентрацией не более 10 г/л. Эффективность очистки от масел 55–70%, от жиров до 92–99%. Стальные электроды используют для электрокоагуляции хроматов, тяжелых металлов, фосфатов, полимеров.
Электродиализ (гр. dialysis – отделение). При электродиализе разделение ионов раствора М+ и Х– происходит под воздействием разности концентраций частиц и разности потенциалов, создаваемой в электродиализаторе по обе стороны мембран. Простейший электродиализатор представляет собой ванну, разделенную на три камеры двумя диафрагмами или мембранами (рис. 23).
|
Рис. 23. Схема электродиализатора: 1 – анионитовая мембрана; 2 – катионитовая мембрана |
В качестве диафрагм используют инертные пористые природные и синтетические материалы: асбест, стеклоткань, полихлорвиниловую ткань и др. В качестве мембран применяют иониты. От средней камеры анионитовая мембрана 1 отделяет камеру с анодом, а катионитовая 2 – камеру с катодом.
При пропускании через электродиализатор постоянного тока на аноде происходит окисление анионов, обычно ОН–, или выделение кислорода при разложении воды:
2ОН– → О2↑ + 2Н+ + 4е–;
2Н2О → О2↑ + 4Н+ + 4е–.
Образующиеся катионы водорода Н+ не могут переходить через анионитовую мембрану в среднюю камеру. Они увеличивают кислотность в анодной камере. Уменьшение концентрации анионов по сравнению с концентрацией катионов ведет к росту разности потенциала и концентрации анионов между анодной и средней камерой. Это увеличивает скорость перехода анионов Х– из средней камеры в анодную камеру через анионитовую мембрану или диафрагму.
Аналогичное явление, но противоположное по знаку, наблюдается в катодной камере, где происходит катодное восстановление катионов водорода или воды:
2Н+ + 2е– → Н2↑;
2Н2О + 2е– → Н2↑+ 2ОН–.
Раствор в катодной камере обогащается ОН– – ионами, возрастает его рН, дефицит катионов, разность потенциалов. Ускоряется переход катионов М+ из средней камеры в катодную.
Таким образом, при пропускании через электродиализатор постоянного тока анионы Х– из средней камеры переходят в анодную, а катионы М+ – в катодную камеру, практически до полного их удаления. Применение ионитовых мембран позволяет создавать в анодной камере кислую среду, а в катодной – щелочную. Диафрагмы же не мешают переходу Н+– ионов из анодной камеры и ОН– – ионов из катодной камеры в среднюю камеру. В ней они взаимодействуют, образуя воду. Поэтому рН в камерах практически не изменяется.
Аноды и катоды изготавливают из инертных материалов: графита, магнетита, платинированного титана. Число камер в электродиализаторах достигает 100–200. На снижение содержания солей с 250 до 5 мг/л расходуется 7 кВт-ч/м3.
