Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Решение уравнений в целых числах.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
121.34 Кб
Скачать

Отсюда найдём – 51/5  t  - 17/2. Этим неравенством удовлетворяют числа - 10, - 9. Соответствующие частные решения запишутся в виде пар: (1,3), (6, 1).

Задача 3.

Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причём петух стоит 5 монет, курица – 4, а 4 цыплёнка – одну монету?

Решение.

Пусть х – искомое число петухов, у – кур, а 4z – цыплят. Составим систему х + у + 4z = 100

5x + 4y + z = 100, которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4 , а второе – на (-1) и, сложив результаты, придём к уравнению -x + 15z = 300 с целочисленными решениями x = -300 + 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 - 19t. Значит, целочисленные решения системы имеют вид x = -300 + 15t,

y = 400 - 19t, z = t. Из условия задачи вытекает, что

-300 + 15t 0

400 – 19t 0

t 0 , откуда 20 t 21 1/19, т. е. t = 21 или t = 20.

Ответ.

На 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыплёнка.

Задача 4.

Крестьянка несла на базар корзину яиц. Неосторожный всадник, обгоняя женщину, задел корзину, и все яйца разбились. Желая возместить ущерб, он спросил у крестьянки, сколько яиц было в корзине. Она ответила, что число яиц не знает, но когда она раскладывала их по 2, по 3, по 4, по 5 и по 6, то каждый раз одно яйцо оставалось лишним, а когда она разложила по 7, лишних яиц не осталось. Сколько яиц несла крестьянка на базар?

Решение.

Пусть х – число яиц. Так как х – 1 делится на 2, на 3, на 4, на 5, на 6, то оно делится на их НОК, равное 60. Значит, х имеет вид 60у + 1. Поэтому для ответа на вопрос задачи надо решить в натуральных числах уравнение 60у + 1 = 7z. С помощью алгоритма Евклида находим у0 = -2, z0 = - 17, откуда все целочисленные решения уравнения имеют вид у = -2 + 7t, z = -17 + 60t, где t – любое целое число. Наименьшее положительное решение получаем при t = 1. В этом случае у = 5, z = 43. Итак, крестьянка несла на базар 301 яйцо.

Ответ.

Крестьянка несла на базар 301 яйцо.

2. 3 Цепные дроби.

Следующий метод связан с непрерывными или цепными дробями.

Обратимся вновь к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь a/b можно записать в виде суммы целой части и правильной дроби: a/b = q0 + r1/b. Но r1/b = 1/b/r1, и на основании второго равенства той же системы имеем b/r1 = q1 + r2/r1. Значит, a/b=q0+1/(q1+r2/r1). Далее получим a/b=q0 + 1/(q1+1/(q2+r3/r2)). Продолжим этот процесс до тех пор. Пока не придём к знаменателю qn

В результате мы представим обыкновенную дробь a/b в следующем виде: a / b = q0 + 1 / (q1 + 1 / (…+ 1 / qn)). Эйлер назвал дроби такого вида непрерывными. Приблизительно в тоже время в Германии появился другой термин – цепная дробь. Так за этими дробями и сохранились оба названия. Ввиду громоздкости развёрнутой записи цепной дроби применяют компактную запись [q0; q1, q2, …,qn].

Задача 5.

Представить дробь 40/31 в виде цепной.

Решение.

40/31 = 1 + 9/31 = 1 + 1/3 /9 = 1 + 1/(3 + 4 / 9) = 1 + 1 / (3 + 1 / 9 / 4) = =1 + 1 / (3 + 1 / (2 +1 / 4)) = [1; 3, 2, 4]

Удобство применения цепных дробей заключается в том, что их свойства не связаны ни с какой системой счисления. По этой причине они эффективно используются в теоретических исследованиях. Но широкого практического применения цепные дроби не получили, так как для них нет удобных правил выполнения арифметических действий.