Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вер-тей и мат статистика_Эки-21.DOC
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
774.14 Кб
Скачать

6 Вариант

Задача 1) Из коробки, в которой находятся 6 карандашей и 7 ручек, вынимают два предмета. Найти вероятности следующих событий: А1 – оба вынутых предмета – ручки; А2 – вынута хотя бы одна ручка; А3 – вынуты ручка и карандаш.

Задача 2) В ящике 18 одинаковых бутылок пива без этикеток. Известно, что треть из них «Жигулевское». Случайным образом выбирают 3 бутылки. Вычислите вероятность того, что среди них:

а) только пиво сорта «Жигулевское»;

б) ровно одна бутылка этого сорта.

7 Вариант

Задача 1) Продано 120 билетов лотереи, из них 10 – выигрышные. Некто купил 2 билета. Найти вероятность того, что хотя бы один из его билетов окажется выигрышным.

Задача 2) В студенческой группе 20 девушек. Известно, что 5 из них не любят читать детективы. Случайным образом выбирают трех девушек и дарят им по детективу. Вычислите вероятность того, что:

а) все девушки оценят этот подарок;

б) только одна девушка оценит этот подарок.

8 Вариант

Задача 1) Студент знает ответы на 10 вопросов из 20. Ему задают три вопроса, выбранные случайно из списка. Найти вероятность того, что он: а) ответит не на все вопросы; б) не ответит на все вопросы; в) ответит на один вопрос.

Задача 2) В коробке 30 одинаковых юбилейных монет. Известно, что 5 из них имеют нестандартный процент содержания золота. Случайным образом выбирают три монеты. Вычислите вероятность того, что:

а) все монеты имеют нестандартный процент содержания золота;

б) только одна монета имеет нестандартный процент содержания золота.

9 Вариант

Задача 1) Среди 100 изделий 20 бракованных. Найти вероятность того, что среди пяти наугад взятых изделий будет три бракованных.

Задача 2) На витрине 32 одинаковых булочки. Известно, что среди них четверть булочек с изюмом, остальные с корицей. Случайным образом отбирают три булочки. Вычислите вероятность того, что:

а) все выбранные булочки с изюмом;

б) только одна булочка с изюмом.

Тема 3. Операции над событиями. Условная вероятность. Теоремы сложения и умножения вероятностей.

0) Для охраны банка созданы три независимо работающие системы безопасности, вероятности отказа которых равны соответственно 0,05, 0,02 и 0,01. Какова вероятность того, что в случае несанкционированного проникновения в банк сработает хотя бы одна система безопасности?

1) Игральная кость подбрасывается один раз. Наблюдаемый результат - выпавшее число очков. Рассмотрим события: А1 – выпавшее число кратно трём; А2 – выпавшее число нечетно; А3 – выпавшее число не меньше трёх; А4 – выпавшее число не больше двух; А5 – выпало число от 2 до 4. Выяснить, какие из этих событий являются попарно несовместными. Сформулировать, в чем состоят события А2, А3, А1А2, А12, А1А3, А13, А1А4, А14, А1А5, А2А3, А2А5, А25, А3А4, А34, А3А5, А45, А125.

2) Из урны, в которой находятся 7 черных и 8 белых шаров, вынимают наугад три шара. Найти вероятность того, что они будут одного цвета.

3) Из колоды в 36 карт вынимают 7 карт. Найти вероятность того, что среди них 4 дамы или 4 короля.

4) Один раз подбрасывается игральная кость. События: А – выпало простое число очков; В – выпало четное число очков. Вычислить вероятности Р(А) и Р(А/В).

5) Два раза подбрасывается игральная кость. События: А – оба раза выпало число очков, кратное 3; В – оба раза выпало одно и то же число очков. Вычислить вероятности Р(А) и Р(А/В).

6) Из колоды в 36 карт вынимают две карты. Найти вероятность того, что: а) это тузы; б) это тузы при условии, что вынуты красные карты.

7) Заключение сделки состоит из двух последовательных независимых этапов. Вероятность успешного прохождения первого этапа равна 0,9, второго этапа – 0,8. Найти вероятность того, что сделка будет заключена.

8) Коммерсант договаривается о поставке товаров с двумя поставщиками, действующими независимо друг от друга. Вероятность того, что первый поставщик поставит товар, равна 0,95, а того, что второй – 0,6. Найти вероятность того, что коммерсант получит товар (т.е. товар поставит хотя бы один поставщик).

9) В магазине установлены две независимо работающие системы сигнализации. Вероятность несрабатывания первой системы равна 0,05, второй системы – 0,02. Найти вероятность того, что в случае необходимости сработает хотя бы одна система сигнализации.