
- •1. Экологическая медицина: понятие, цели, задачи. Вклад наследственности, пищевого статуса и свободнорадикального стресса в развитие экологически зависимых заболеваний.
- •2. Экосистема, составляющие экосистемы.
- •3. Видимый свет: определение понятия, характеристика. Биологические часы, механизм регуляции суточного цикла. «Сезонное эмоциональное заболевание».
- •4. Ультрафиолетовое излучение (уфи)
- •5. Ультрафиолетовое излучение (уфи): понятие о минимальной эритемной дозе (мэд). Уф-индекс.
- •6. Геомагнитные факторы. Механизм возникновения магнитных бурь. Реакция человека на действие геомагнитных факторов. Профилактика неблагоприятного воздействия геомагнитных факторов на организм.
- •8. Особенности влияния загрязняющих атмосферу веществ на организм человека. Оксиды углерода.
- •9. Оксиды азота: их характеристика, источники поступления в атмосферу, механизмы токсичного действия на организм человека. Фотохимический смог: действие на организм человека.
- •10. Оксиды серы. Химический смог и кислотные осадки, их возможные экологические и медицинские последствия.
- •11. Стратосферный озон. Проблема разрушения озонового слоя. Биолого-медицинские последствия разрушения озонового слоя.
- •12. Заболевания, связанные с экологическим состоянием гидросферы. Эвтрофикация водоемов. Эколого-медицинская характеристика хлора и летучих органических соединений, содержащихся в воде.
- •13. Геомедицина. Естественная и антропогенная геохимическая провинция, взаимосвязь с соответствующей заболеваемостью населения, примеры эндемической патологии.
- •14. Эндемическая недостаточность поступления йода в организм человека. Струмогенные факторы.
- •15. Фазы детоксикации ксенобиотиков. Система микросомального окисления. Понятие о метаб-кой активации. Индукторы и ингибиторы микросомального окисления.
- •16. Элиминация ксенобиотиков. Конъюгация ксенобиотиков: понятие, ферменты, участвующие в реакциях конъюгации, регуляция их активности.
- •17. Вредные химические вещества естественного происхождения. Биогенные амины.
- •18. Ртуть (Hg) - токсичный загрязнитель пищевых продуктов и воды. Проведение демеркуризации в быту.
- •19. Кадмий (Cd) - токсичный загрязнитель пищевых продуктов и воды: источники поступления в продукты.
- •22. Полихлорированные бифенилы и диоксины как опасные загрязнители окружающей среды. Источники поступления в окружающую среду. Эколого-медицинские последствия накопления в биосфере.
- •23. Нитриты и нитраты: основные источники поступления в организм человека, действие нитритов и нитратов на организм человека, медицинская помощь при остром отравлении нитритами и нитратами.
- •24. Табачный дым – загрязнитель внутренней среды помещений. Возможные реакции организма человека на хроническое поступление табачного дыма и продуктов его сгорания.
- •25. Природный газ - загрязнитель внутренней среды помещений. Возможные реакции организма человека на хроническое поступление природного газа.
- •26. Множественная химическая чувствительность: определение понятия, факторы, способствующие ее развитию; непосредственные химические индукторы; характерные особенности.
- •27. Неионизирующие электромагнитные излучения: понятие, классификация. Механизмы биологического действия электромагнитных полей.
- •28. Действие низкочастотных электромагнитных полей на критические системы организма. Снижение неблагоприятных последствий их воздействия.
- •29. Сотовая связь: понятие, особенности. Влияние пульсирующего микроволнового излучения на человека. Снижение неблагоприятных последствий его воздействия.
- •31. Мониторинг: понятие, виды. Социально-гигиенический мониторинг: цели и задачи, структура.
- •32. Оценка риска здоровью человека, обусловленного загрязнением окружающей среды: понятие, этапы, модели оценки дозозависимых реакций организма на действие канцерогенных и неканцерогенных веществ.
- •33. Содержание предмета «радиационная медицина». Цели, задачи, методы радиационной медицины.
- •34. Понятия: "нуклон", "изотоп", "радионуклид"; их основные характеристики. Радиоактивность, традиционные и системные единицы радиоактивности и их соотношение. Закон радиоактивного распада.
- •35. Механизм образования и характеристика корпускулярных видов излучения (альфа-, бета-частиц); их взаимодействие с веществом.
- •36. Механизм образования и характеристика рентгеновского и гамма-излучения, их взаимодействие с веществом.
- •37. Стадии формирования лучевого поражения. Прямое и косвенное действие ионизирующих излучений на биомолекулы. Кислородный эффект.
- •38. Радиолиз воды. Общая схема окислительного стресса.
- •39. Радиационная биохимия нуклеиновых кислот,белков,липидов. Основные типы репарации днк.
- •I. Прямая репарация:
- •III. Репарация с использованием межмолекулярной информации:
- •IV. Индуцибельная репарация.
- •Действие ионизирующих излучений на белки.
- •Действие ионизирующих излучений на липиды.
- •Действие ионизирующих излучений на мембранные структуры клетки.
- •Действие ионизирующего излучения на углеводы.
- •40. Реакция клеток на облучение. Современные представления о механизмах интерфазной и митотической гибели клетки.
- •41. Дозиметрия. Виды доз.
- •42. Радиационный фон: составляющие радиационного фона и их вклад в формирование эффективных доз облучения населения.
- •43. Естественный радиационный фон: источники земного и внеземного происхождения, их вклад.
- •Внеземное ионизирующее излучение.
- •Земное ионизирующее излучение.
- •44. Радиоактивные ряды: понятие, основные дочерние радионуклиды.
- •45. Радон и уровни облучения населения радоном. Оптимизация дозовых нагрузок, создаваемых радоном.
- •46. Ядерная энергетика. Авария на чаэс, динамика выброса во времени и в пространстве..
- •Типы воздействия радионуклидов:
- •2. Н (недели)
- •Типы распределения радионуклидов в организме:
- •49. Дозообразующие радионуклиды: I-131, Cs-137, Sr-90 – характеристика, поступление, распределение и выведение из организма, возможные биоэффекты.
- •50. Дозообразующие радионуклиды: c-14, Pu-239, Am-241, «горячие частицы» – характеристика, поступление, распределение и выведение из организма, возможные биологические эффекты.
- •51. Способы снижения поступления и ускорения выведения радионуклидов из организма.
- •1) Мероприятия по снижению поступления радионуклидов в организм:
- •2) Мероприятия, ограничивающие всасывание радионуклидов в организм
- •3) Мероприятия, направленные на ускорение выведения радионуклидов из организма:
- •4) Мероприятия по предотвращению действия радионуклидов на биологические молекулы:
- •52. Радиочувствительность: понятие, критерии оценки, определяющие её факторы.
- •53. Основные радиационные синдромы: характеристика, связь с дозой облучения.
- •54. Детерминированные последствия радиационного воздействия, их типы и характеристика.
- •4) Неопухолевые формы поражения кожи:
- •55. Стохастические последствия облучения.
- •2. Физиологическая неполноценность потомства:
- •56. Сравнительная характеристика детерминированных и стохастических последствий облучения.
- •57. Особенности формирования лучевых поражений у разных возрастных категорий населения.
- •58. Понятие о малых дозах ионизирующего излучения. Действие малых доз ионизирующего излучения на организм. Радиационный гормезис.
- •59. Международные и национальные органы регулирования и управления в области обеспечения радиационной безопасности.
- •2. Евратом
- •3. Воз: медицинская инспекция мероприятий по обеспечению радиационной безопасности
- •60. Общая характеристика основных документов, регламентирующих обеспечение радиационной безопасности персонала и населения
- •1. Нормы радиационной безопасности - 2000
- •Глава 4 - общие требования по обеспечению радиационной безопасности
- •Глава 5 - обеспечение радиационной безопасности при авариях
- •Глава 6 - права и обязанности граждан и общественных объединений в области обеспечения радиационной безопасности
- •Глава 7 - ответственность за нарушение радиационной безопасности.
- •61. Закрытые и открытые источники ионизирующего излучения. Организация работ с источниками ионизирующего излучения. Методы защиты от внешнего и внутреннего облучения.
- •62. Радиационные аварии. Обеспечение радиационной безопасности населения при радиационных авариях.
- •63. Регламентация обеспечения радиационной безопасности пациентов и населения при медицинском облучении. Учет доз пациентов.
- •64. Принципы снижения дозовых нагрузок на пациентов при проведении рентгенологических исследований. Категории пациентов, выделяемые при проведении рентгенодиагностических исследований.
33. Содержание предмета «радиационная медицина». Цели, задачи, методы радиационной медицины.
Радиационная медицина - наука, изучающая особенности воздействия ионизирующего излучения на организм человека, принципы лечения лучевых повреждений и профилактики возможных последствий облучения населения.
Цель: предотвращение или сведение к минимуму возможных последствий облучения человека.
Задачи:
1) вскрытие возможных закономерностей биологического ответа на действие источников ионизирующих излучений
2) управление лучевыми реакциями в организме
Методы радиационной медицины:
1) экспериментальной
2) клинический
3) эпидемиологический
4) метод санитарной экспертизы и гигиенической регламентации
Направления радиационной медицины:
1. дозиметрическое - изучение источников и уровней облучения
2. радиобиологическое - изучение в эксперименте и с помощью эпидемических последствий эффектов и последствий воздействия ионизирующего излучения на биообъекты.
3. клиническое - противолучевая защита и терапия радиационных поражений
4. профилактическое - методологическое обеспечение, санитарно-организационные мероприятия, обоснование и разработка санитарно-гигиенических регламентов и мер защиты населения, контроль обеспечения радиационной безопасности.
34. Понятия: "нуклон", "изотоп", "радионуклид"; их основные характеристики. Радиоактивность, традиционные и системные единицы радиоактивности и их соотношение. Закон радиоактивного распада.
Нуклон - любая частица, входящая в состав ядра (как протон, так и нейтрон). Основные характеристики нуклонов: заряд (у протона - +1, у нейтрона - 0) и масса (масса протона = массе нейтрона = 1,67*10-27 кг, в периодической системе масса 1 протона = массе 1 нейтрона = 1, масса электрона примерно в 2000 раз меньше и считается при расчетах пренебрежительно малой).
А (атомная масса, количество нуклонов данного элемента) = N (число нейтронов в ядре) + Z (атомный номер элемента).
Изотопы - атомы с одним и тем же зарядом ядра (т.е. одинаковым Z), но разным массовым числом, т.е. отличающиеся количеством нейтронов в ядре (разные N и А).
Радионуклиды - ядра радиоактивных атомов:
а) естественные - радионуклиды, которые образовались и постоянно образуются без участия человека
б) искусственные - радионуклиды, получаемые искусственным путем в ядерных реакторах различного назначения и т.д.
В настоящее время практически не существует таких элементов, у которых не было бы радиоактивного изотопа. По химическим свойствам радиоизотопы не отличаются от стабильных, то есть стабильный и радиоактивный изотопы следуют вместе по всем цепочкам в соответствии с химическими и биологическими законами круговорота в природе.
Радиоактивность - самопроизвольное превращение ядер одних элементов в другие, при котором ядро переходит в более устойчивое состояние. Процесс сопровождается испусканием ионизирующих излучений (корпускулярных либо электромагнитных).
За единицы радиоактивности приняты:
а) системная - Беккерель (Бк, Bq).
1 Бк - активность нуклида в радиоактивном источнике, в котором за время 1 с происходит 1 акт распада (1 Бк = 1 распад/сек ).
б) традиционная (внесистемная) - Кюри ( Ки, Ci).
1 Ки - количество радиоактивного вещества, которое распадается с интенсивностью 3,7*1010 распадов в 1 секунду, т.е.
1 Ки = 3,7*1010 Бк, 1 Бк = 2,703*10-11 Ки.
Радиоактивные превращения характеризуются:
1) способом выделения избыточной энергии, которая отдается либо в виде альфа- или бета-частиц определенной энергии, либо электромагнитного излучения;
2) временем протекания радиоактивного распада и вероятностью распада ядра за единицу времени.
Радиоактивный
распад - явлениестатистическое
- нельзя предсказать, когда именно
распадется данное нестабильное ядро.
Для описания статистических закономерностей
радиоактивного распада используется
естественная статистическая величина
- постоянная
распада ,
физический смысл которой заключается
в том, что если взять большое число N
одинаковых нестабильных ядер, то за
единицу времени в среднем будет
распадаться N
ядер. Постоянная распада не зависит
от времени.
Величина N - активность, она характеризует излучение препарата в целом, а не отдельного ядра.
Уменьшение количества активных ядер с течением времени происходит в соответствии с законом радиоактивного распада, который описывается экспоненциальной кривой и формулируется следующим образом: за равные промежутки времени происходит превращение равных долей активных атомов.
Закон радиоактивного распада имеет математическое выражение:
,
где
- исходное количество радиоактивных
ядер;
- количество активных ядер, оставшихся
спустя время распадаt;
e
- основание натуральных логарифмов;
- постоянная распада, t
- время распада.
Период полураспада (Т1/2 или Tf) - время, в течение которого число радиоактивных ядер уменьшается вдвое.
Постоянная распада связана с периодом полураспада, поэтому закон радиоактивного распада можно записать следующим образом:
Данная формула может быть использована для практических целей, когда необходимо дать рекомендации о возможности использования загрязненных радионуклидами территорий, продуктов питания, воды, так как через 10 Т1/2 остается практически чистая среда (т.е. остается меньше 0,1% от исходного количества радионуклида). Пример: I-131 имеет период полураспада, равный 8,05 суток; цельное молоко и листовые овощи местного производства запрещают использовать в течение 2-3 месяцев после выброса радиоактивного йода; у Cs-137 период полураспада равен 30,1 г; у Sr-90 период полураспада равен 29,12 г; т.е. земли, загрязненные Cs-137 и Sr-90 можно будет использовать спустя 300 лет после аварии на ЧАЭС.