- •Содержание
- •Определение показателя преломления стекла с помощью микроскопа
- •Теоретические положения
- •Законы отражения света
- •Законы преломления света
- •Содержание работы
- •Описание оборудования
- •Порядок работы
- •Интерференция в тонких пленках
- •Полосы равного наклона
- •Полосы равной толщины
- •Кольца Ньютона
- •Описание оборудования
- •Обработка результатов
- •Контрольные вопросы
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •1. Закон Брюстера, или поляризация при отражении от поверхности диэлектрика
- •2. Поляризация при двойном лучепреломлении
- •Поляроиды
- •Закон Малюса
- •Описание оборудования и порядок работы
- •Контрольные вопросы
- •Литература
- •Определение концентрации раствора сахара поляриметром
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Определение постоянной стефана−больцмана при помощи оптического пирометра
- •Теоретические положения
- •Характеристики теплового излучения
- •Законы теплового излучения
- •Закон Стефана−Больцмана
- •Содержание работы
- •Описание оборудования и порядок работы
- •Фотоэлементы
- •Описание оборудования и порядок работы
- •Снятие вах фотоэлемента
- •Определение интегральной чувствительности фотоэлемента
- •Проверка 1-го закона фотоэффекта
- •Контрольные вопросы
- •3 Постулат
- •Измерение и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний линз методом бесселя
- •Теоретические положения
- •Содержание работы
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний и положений главных плоскостей двухлинзовой оптической системы
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Моделирование оптических приборов и определение их увеличения
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Описание оборудования
- •Порядок выполнения работы и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение расстояния между щелями в опыте юнга
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Исследование закона малюса и прохождения поляризованного света через фазовую пластинку
- •Теоретические положения
- •Эллиптическая поляризация света
- •Закон малюса
- •Прохождение плоскополяризованного света через кристаллическую пластинку
- •Описание оборудования
- •Порядок работы
- •Исследование закона Малюса
- •Обработка результатов
- •Работа с фазовой пластинкой
- •Обработка результатов
- •Описание оборудования
- •Порядок выполнения работы
- •Описание лабораторной установки
- •Порядок работы
- •Обработка результатов
- •Примечание
- •Рекомендуемые задания
- •Приложение
- •Контрольные вопросы
- •Литература
- •Характеристики фильтров оптического излучения
- •Коэффициенты поглощения для разных категорий оптического стекла
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Дифракция Фраунгофера на круглом отверстии
- •Примеры дифракционных картин Пятно Пуассона
- •Дифракция Френеля на круглом отверстии
- •Настройка армс
- •Порядок измерений
- •Обработка результатов
- •Контрольные вопросы
- •Литература
1. Закон Брюстера, или поляризация при отражении от поверхности диэлектрика
Рис.
3.6.4.
Опыт показывает, что отраженный луч оказывается полностью плоско поляризованным, если тангенс угла падения равен показателю преломления,
(3.6.1)
при этом угол между отраженным и преломленным лучами равен 90, а угол iБ называется углом полной поляризации, или углом Брюстера (рис. 3.6.4).
Полученное соотношение (3.6.1) называется законом Брюстера. Он читается так:
Тангенс угла полной поляризации при отражении от диэлектрика равен показателю преломления отражающей среды.
Преломленный луч при этом частично поляризован. Колебания вектора в этом луче совершаются преимущественно в плоскости падения.
Для увеличения степени поляризации проходящего света используют стопу стеклянных пластин. При угле падения, равном углу Брюстера и достаточно большем числе пластин выходящий луч практически полностью поляризован.
Рис. 3.6.5.
2. Поляризация при двойном лучепреломлении
Явление двойного лучепреломления наблюдается в анизотропных средах. Анизотропной средой называется среда, физические свойства которой в различных направлениях различны (например, кристаллы кварца, исландского шпата, турмалина и др.). Предметы, рассматриваемые через такие кристаллы, кажутся раздвоенными.
На рис. 3.6.6 показано прохождение света через кристалл исландского шпата. Прямая О1О2 называется кристаллографической осью. Всякое направление в кристалле, параллельное О1О2 называется оптической осью. Луч, распространяющийся в этом направлении, не испытывает двойного лучепреломления.
Рис.
3.6.6.
Естественный луч разделяется в кристалле на два луча: BD и BС. Луч BС называется обыкновенным лучом и обозначается индексом о. Скорость его в кристалле не зависит от кристаллографического направления, и он подчиняется обычным законам преломления. Показатель преломления для него также не зависит от направления и равен :
. (3.6.2)
Луч BD называется необыкновенным, и обозначается индексом е. Скорость его в кристалле зависит от направления: показатель преломления также зависит от направления в кристалле и равен
(3.6.3)
Таким образом, необыкновенный луч не подчиняется законам преломления. Он, как правило, не лежит в плоскости падения и отклоняется от луча о даже при нормальном падении (рис. 3.6.7). Вдоль направления оптической оси двойного лучепреломления нет.
Рис.3.6.7.
Чтобы использовать такие поляризованные лучи для технических целей, их надо отделить один от другого. Это осуществляется в призме Николя.
Для изготовления призмы Николя две естественные грани кристалла исландского шпата срезают так, чтобы уменьшить угол между поверхностями до 68. Затем кристалл распиливается на две части по плоскости ВD под углом 90 к новым граням.
Обе половины склеиваются канадским бальзамом.
На переднюю грань призмы падает луч S естественного света. В призме он раздваивается на два луча – обыкновенный (n0 = 1,658) и необыкновенный (ne = 1,515). Так как ne<nк.б.<n0, то слой канадского бальзама оптически менее плотен, чем исландский шпат, для обыкновенного луча и оптически более плотен для необыкновенного луча. Обыкновенный луч падает на поверхность канадского бальзама под углом, бóльшим чем угол предельного полного внутреннего отражения, и, отразившись, поглощается в оправе призмы. Необыкновенный луч свободно проходит через слой канадского бальзама и после преломления на задней грани выходит из призмы параллельно падающему лучу S. Таким образом, призма Николя преобразует естественный свет в свет плоскополяризованный, плоскость колебаний которого совпадает с главной плоскостью призмы.
Рис. 3.6.8.
