- •Содержание
- •Определение показателя преломления стекла с помощью микроскопа
- •Теоретические положения
- •Законы отражения света
- •Законы преломления света
- •Содержание работы
- •Описание оборудования
- •Порядок работы
- •Интерференция в тонких пленках
- •Полосы равного наклона
- •Полосы равной толщины
- •Кольца Ньютона
- •Описание оборудования
- •Обработка результатов
- •Контрольные вопросы
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •1. Закон Брюстера, или поляризация при отражении от поверхности диэлектрика
- •2. Поляризация при двойном лучепреломлении
- •Поляроиды
- •Закон Малюса
- •Описание оборудования и порядок работы
- •Контрольные вопросы
- •Литература
- •Определение концентрации раствора сахара поляриметром
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Определение постоянной стефана−больцмана при помощи оптического пирометра
- •Теоретические положения
- •Характеристики теплового излучения
- •Законы теплового излучения
- •Закон Стефана−Больцмана
- •Содержание работы
- •Описание оборудования и порядок работы
- •Фотоэлементы
- •Описание оборудования и порядок работы
- •Снятие вах фотоэлемента
- •Определение интегральной чувствительности фотоэлемента
- •Проверка 1-го закона фотоэффекта
- •Контрольные вопросы
- •3 Постулат
- •Измерение и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний линз методом бесселя
- •Теоретические положения
- •Содержание работы
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний и положений главных плоскостей двухлинзовой оптической системы
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Моделирование оптических приборов и определение их увеличения
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Описание оборудования
- •Порядок выполнения работы и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение расстояния между щелями в опыте юнга
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Исследование закона малюса и прохождения поляризованного света через фазовую пластинку
- •Теоретические положения
- •Эллиптическая поляризация света
- •Закон малюса
- •Прохождение плоскополяризованного света через кристаллическую пластинку
- •Описание оборудования
- •Порядок работы
- •Исследование закона Малюса
- •Обработка результатов
- •Работа с фазовой пластинкой
- •Обработка результатов
- •Описание оборудования
- •Порядок выполнения работы
- •Описание лабораторной установки
- •Порядок работы
- •Обработка результатов
- •Примечание
- •Рекомендуемые задания
- •Приложение
- •Контрольные вопросы
- •Литература
- •Характеристики фильтров оптического излучения
- •Коэффициенты поглощения для разных категорий оптического стекла
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Дифракция Фраунгофера на круглом отверстии
- •Примеры дифракционных картин Пятно Пуассона
- •Дифракция Френеля на круглом отверстии
- •Настройка армс
- •Порядок измерений
- •Обработка результатов
- •Контрольные вопросы
- •Литература
Описание оборудования
П
риборы
и принадлежности:
осветитель, дифракционная решетка,
экран с миллиметровым масштабом,
измерительная линейка.
Рис. 3.5.9.
Для определения длины волны света с помощью дифракционной решетки на специальной рейке укрепляется решетка P и щель; штрихи решетки и щель располагаются параллельно. Щель освещается источником S. Перпендикулярно к оси рейки укрепляется миллиметровая линейка AB с подвижным указателем. Щель рассматривается через решетку глазом. На линейку проектируется изображение главных максимумов. На рис. 8 L – расстояние от дифракционной решетки до экрана, х – расстояние между серединами полос одного и того же цвета для спектров первого и второго порядка.
Порядок работы
Включить осветитель в сеть.
Установить экран на заданном расстоянии L от дифракционной решетки.
3. Замерить расстояние x между полосами заданного цвета в спектре первого порядка x1 и второго порядка x2. Проделать аналогичные измерения и вычисления для другого заданного цвета.
Обработка результатов
Для определения длины волны по формуле (3.5.7)
необходимо
учесть, что поскольку L
>> х, то
и тогда
и
, (3.5.8)
где k – порядок спектра, а постоянная решетки d = 0,01 мм. Вычислить среднее значение длины волны каждого цвета из двух значений, полученных из спектров первого и второго порядков. Сравнить полученные результаты с табличными значениями.
k |
x1 |
x2 |
L |
λ1 |
λ2 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
Ср. зн. |
|
|
|
|
|
Контрольные вопросы
Что такое дифракция света?
В чем состоит метод Гюйгенса – Френеля и что такое зоны Френеля?
Как происходит дифракция в сходящихся лучах?
Как происходит дифракция в параллельных лучах (на одной щели)?
Почему нулевой максимум имеет наибольшую яркость? Почему он белый (при освещении белым светом)?
Как происходит дифракция в параллельных лучах на двух щелях?
Что такое дифракционная решетка и постоянная дифракционной решетки?
Какова причина возникновения дисперсии (спектра) света при использовании дифракционной решетки?
Выведите рабочую формулу.
Литература
1. Савельев И.В. Курс общей физики. Т.2.Учеб. пособие для студентов втузов. – М.: КНОРУС, 2009, 576 с.
2. Трофимова Т.И. Курс физики. Учеб. пособ. для вузов.- 15-е изд., стереотип. – М.: Издательский центр «Академия», 2007. – 560 с.
3. Детлаф А.А., Яворский Б.М. Курс физики. Учеб пособие для втузов. – М: Высш. Шк., 1989. – 608 с.
ЛАБОРАТОРНАЯ РАБОТА № 3.6
ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА
Цель работы: экспериментальная проверка закона Малюса.
Теоретические положения
Поляризация света
)
в каждый момент времени взаимно
перпендикулярны и лежат в плоскости,
перпендикулярной к направлению
распространения волны (рис. 3.6.1).
Рис. 3.6.1.
Обычные источники света являются совокупностью огромного числа быстро высвечивающихся, за время около 10-7 – 10-8 секунд, элементарных источников (атомов и молекул), каждый из которых испускает волны с определенной ориентацией векторов и . Но элементарные источники испускают свет совершенно независимо друг от друга с разными фазами и с разной ориентацией векторов и .
Световая волна с различной ориентацией , а, следовательно, и , называется естественным светом.
Векторы и в каждой точке волны пропорциональны по величине друг другу, поэтому состояние световой волны можно характеризовать значением одного из этих векторов, а именно .
Последнее целесообразно, поскольку именно вектор определяет фотоэлектрическое, фотографическое, зрительное и т. д. действия света.
Рис.
3.6.2.
Если какое – либо направление колебаний является преимущественным, то свет называется частично-поляризованным (рис. 3.6.2 б).
Если колебания вектора могут совершаться лишь в одном определенном направлении в пространстве, то свет называется плоскополяризованным (рис. 3.6.2 в).
Если же в плоскополяризованном луче колебания вектора совершаются так, что его конец описывает круг, то свет называется поляризованным по кругу (рис. 3.6.2 г).
В плоскополяризованном луче плоскость колебаний вектора называется плоскостью колебаний.
Плоскость, проходящая через луч и вектор , называется плоскостью поляризации.
Схематически естественный и плоско поляризованный луч можно изображать, как показано на рис. 3.6.3.
Существует несколько способов поляризации света. Приведем некоторые основные из них.
Рис. 3.6.3.
