Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
095.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
8.93 Mб
Скачать

Описание оборудования

П риборы и принадлежности: осветитель, дифракционная решетка, экран с миллиметровым масштабом, измерительная линейка.

Рис. 3.5.9.

Для определения длины волны света с помощью дифракционной решетки на специальной рейке укрепляется решетка P и щель; штрихи решетки и щель располагаются параллельно. Щель освещается источником S. Перпендикулярно к оси рейки укрепляется миллиметровая линейка AB с подвижным указателем. Щель рассматривается через решетку глазом. На линейку проектируется изображение главных максимумов. На рис. 8 L – расстояние от дифракционной решетки до экрана, храсстояние между серединами полос одного и того же цвета для спектров первого и второго порядка.

Порядок работы

  1. Включить осветитель в сеть.

  2. Установить экран на заданном расстоянии L от дифракционной решетки.

3. Замерить расстояние x между полосами заданного цвета в спектре первого порядка x1 и второго порядка x2. Проделать аналогичные измерения и вычисления для другого заданного цвета.

Обработка результатов

Для определения длины волны  по формуле (3.5.7)

необходимо учесть, что поскольку L >> х, то и тогда

и , (3.5.8)

где k – порядок спектра, а постоянная решетки d = 0,01 мм. Вычислить среднее значение длины волны каждого цвета из двух значений, полученных из спектров первого и второго порядков. Сравнить полученные результаты с табличными значениями.

k

x1

x2

L

λ1

λ2

1

2

Ср. зн.

Контрольные вопросы

  1. Что такое дифракция света?

  2. В чем состоит метод Гюйгенса – Френеля и что такое зоны Френеля?

  3. Как происходит дифракция в сходящихся лучах?

  4. Как происходит дифракция в параллельных лучах (на одной щели)?

  5. Почему нулевой максимум имеет наибольшую яркость? Почему он белый (при освещении белым светом)?

  6. Как происходит дифракция в параллельных лучах на двух щелях?

  7. Что такое дифракционная решетка и постоянная дифракционной решетки?

  8. Какова причина возникновения дисперсии (спектра) света при использовании дифракционной решетки?

  9. Выведите рабочую формулу.

Литература

1. Савельев И.В. Курс общей физики. Т.2.Учеб. пособие для студентов втузов. – М.: КНОРУС, 2009, 576 с.

2. Трофимова Т.И. Курс физики. Учеб. пособ. для вузов.- 15-е изд., стереотип. – М.: Издательский центр «Академия», 2007. – 560 с.

3. Детлаф А.А., Яворский Б.М. Курс физики. Учеб пособие для втузов. – М: Высш. Шк., 1989. – 608 с.

ЛАБОРАТОРНАЯ РАБОТА № 3.6

ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы: экспериментальная проверка закона Малюса.

Теоретические положения

Поляризация света

Как известно, свет представляет собой электромагнитные волны. Векторы напряженности электрического и магнитного поля ( и ) в каждый момент времени взаимно перпендикулярны и лежат в плоскости, перпендикулярной к направлению распространения волны (рис. 3.6.1).

Рис. 3.6.1.

Обычные источники света являются совокупностью огромного числа быстро высвечивающихся, за время около 10-7 – 10-8 секунд, элементарных источников (атомов и молекул), каждый из которых испускает волны с определенной ориентацией векторов и . Но элементарные источники испускают свет совершенно независимо друг от друга с разными фазами и с разной ориентацией векторов и .

Световая волна с различной ориентацией , а, следовательно, и , называется естественным светом.

Векторы и в каждой точке волны пропорциональны по величине друг другу, поэтому состояние световой волны можно характеризовать значением одного из этих векторов, а именно .

Последнее целесообразно, поскольку именно вектор определяет фотоэлектрическое, фотографическое, зрительное и т. д. действия света.

Рис. 3.6.2.

В естественном луче колебания вектора беспорядочно меняют направления, оставаясь в плоскости, перпендикулярной лучу (рис. 3.6.2 а).

Если какое – либо направление колебаний является преимущественным, то свет называется частично-поляризованным (рис. 3.6.2 б).

Если колебания вектора могут совершаться лишь в одном определенном направлении в пространстве, то свет называется плоскополяризованным (рис. 3.6.2 в).

Если же в плоскополяризованном луче колебания вектора совершаются так, что его конец описывает круг, то свет называется поляризованным по кругу (рис. 3.6.2 г).

В плоскополяризованном луче плоскость колебаний вектора называется плоскостью колебаний.

Плоскость, проходящая через луч и вектор , называется плоскостью поляризации.

Схематически естественный и плоско поляризованный луч можно изображать, как показано на рис. 3.6.3.

Существует несколько способов поляризации света. Приведем некоторые основные из них.

Рис. 3.6.3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]