- •Содержание
- •Определение показателя преломления стекла с помощью микроскопа
- •Теоретические положения
- •Законы отражения света
- •Законы преломления света
- •Содержание работы
- •Описание оборудования
- •Порядок работы
- •Интерференция в тонких пленках
- •Полосы равного наклона
- •Полосы равной толщины
- •Кольца Ньютона
- •Описание оборудования
- •Обработка результатов
- •Контрольные вопросы
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •1. Закон Брюстера, или поляризация при отражении от поверхности диэлектрика
- •2. Поляризация при двойном лучепреломлении
- •Поляроиды
- •Закон Малюса
- •Описание оборудования и порядок работы
- •Контрольные вопросы
- •Литература
- •Определение концентрации раствора сахара поляриметром
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Определение постоянной стефана−больцмана при помощи оптического пирометра
- •Теоретические положения
- •Характеристики теплового излучения
- •Законы теплового излучения
- •Закон Стефана−Больцмана
- •Содержание работы
- •Описание оборудования и порядок работы
- •Фотоэлементы
- •Описание оборудования и порядок работы
- •Снятие вах фотоэлемента
- •Определение интегральной чувствительности фотоэлемента
- •Проверка 1-го закона фотоэффекта
- •Контрольные вопросы
- •3 Постулат
- •Измерение и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний линз методом бесселя
- •Теоретические положения
- •Содержание работы
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение фокусных расстояний и положений главных плоскостей двухлинзовой оптической системы
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Моделирование оптических приборов и определение их увеличения
- •Теоретические положения
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Описание оборудования
- •Порядок выполнения работы и обработка результатов
- •Контрольные вопросы
- •Литература
- •Определение расстояния между щелями в опыте юнга
- •Теоретические положения
- •Описание оборудования
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Исследование закона малюса и прохождения поляризованного света через фазовую пластинку
- •Теоретические положения
- •Эллиптическая поляризация света
- •Закон малюса
- •Прохождение плоскополяризованного света через кристаллическую пластинку
- •Описание оборудования
- •Порядок работы
- •Исследование закона Малюса
- •Обработка результатов
- •Работа с фазовой пластинкой
- •Обработка результатов
- •Описание оборудования
- •Порядок выполнения работы
- •Описание лабораторной установки
- •Порядок работы
- •Обработка результатов
- •Примечание
- •Рекомендуемые задания
- •Приложение
- •Контрольные вопросы
- •Литература
- •Характеристики фильтров оптического излучения
- •Коэффициенты поглощения для разных категорий оптического стекла
- •Описание оборудования
- •Порядок работы
- •Обработка результатов
- •Контрольные вопросы
- •Литература
- •Дифракция Фраунгофера на круглом отверстии
- •Примеры дифракционных картин Пятно Пуассона
- •Дифракция Френеля на круглом отверстии
- •Настройка армс
- •Порядок измерений
- •Обработка результатов
- •Контрольные вопросы
- •Литература
Фотоэлементы
На основе внешнего и внутреннего фотоэффекта создано множество приборов, преобразующих световой сигнал в электрический. К ним относятся фотоэлементы, фотосопротивления, фотоэлектронные умножители, электронно-оптические преобразователи, передающие телевизионные трубки, фотодиоды и т.д. На внешнем фотоэффекте основана работа вакуумных фотоэлементов. Конструктивно они выполнены в виде стеклянного баллона, откачанного до высокого вакуума (рис. 3.9.1). Часть внутренней поверхности баллона покрыта слоем чувствительного к свету вещества, который называется фотокатодом. В качестве фотокатода используются вещества с малой работой выхода. Такими веществами является соединения сурьмы с одним или несколькими щелочными металлами и соединения серебро – цезий. Анодом служит металлическое кольцо или сетка, помещенные в центре баллона.
Рис.
3.9.1.
Рис. 3.9.2.
Для обращения силы тока в нуль на анод надо подать отрицательное задерживающее напряжение. При таком напряжении ни одному из электронов, даже обладающему максимальной скоростью, не удастся достигнуть анода. Поэтому можно записать:
,
(3.9.5)
где
– кинетическая энергия электрона .
3 – 4 – это участок насыщения тока. На этом участке все электроны, испущенные катодом, попадают на анод. Для увеличения тока насыщения надо увеличить интенсивность света.
Одним из основных параметров любого фотоэлемента является интегральная чувствительность, равная силе фототока насыщения при световом потоке в 1 лм. Главным недостатком вакуумных фотоэлементов является малая интегральная чувствительность. Значительно большей интегральной чувствительностью обладают фотоэлектронные умножители (ФЭУ).
На явлении внутреннего фотоэффекта в полупроводниках основано действие вентильных фотоэлементов и фотосопротивлений. Они устроены следующим образом. На металлическую подложку М наносится слой полупроводника Р (рис. 3.9.3). На границе металл – полупроводник в силу их различных физических свойств образуется запирающий слой, пропускающий носители тока в одном направлении – из полупроводника в металл.
При освещении полупроводника в нем образуется большее число свободных электронов, в результате равновесное распределение носителей тока в области контакта нарушается, и электроны переходят из полупроводника в металл, заряжая металл отрицательно, а полупроводник – положительно. Таким образом, на границе металл – полупроводник образуется два противоположных полюса, и, если их соединить проводником, по цепи потечет ток без какого-либо дополнительного источника тока. Иначе говоря, вентильный фотоэлемент сам является источником тока.
Явление возникновения ЭДС при освещении контакта металл – полупроводник называется вентильным фотоэффектом.
В отличие от вакуумных вентильные фотоэлементы непосредственно преобразуют световую энергию в электрическую. Наиболее эффективными являются вентильные фотоэлементы, основанные на использования контакта двух полупроводников электронного (n) и дырочного (p) типа проводимости, т.е. на так называемом p-n – переходе .
Несколько десятков соединенных последовательно p-n – переходов образуют солнечную батарею.
Вентильные фотоэлементы имеют значительно большую интегральную чувствительность, чем вакуумные.
Фотосопротивления представляют собой нанесенный на стеклянную пластинку слой полупроводника, на поверхности которого укреплены токоподводящие электроды (рис.3.9.4).
Рис. 3.9.3. Рис. 3.9.4.
При освещении полупроводника число носителей тока в нем резко возрастает, а сопротивление резко падает. Изменяя интенсивность света, можно регулировать сопротивление цепи в широком интервале.
