- •Астраханский государственный технический университет м.А. Григорьева с.А. Нурмухамбетова о.В. Фёдорова
- •Introduction/ введение
- •Petroleum industry: introduction to oil and gas
- •A brief history of petroleum – upstream, downstream, all around the stream
- •История нефти
- •Chapter II origin and accumulation of hydrocarbons
- •Formation of oil
- •How Oil Becomes Oil
- •Physical and Chemical Properties of Oil
- •Finding Oil
- •How to Find Oil
- •Fluid Flow
- •Oil and gas energy drives
- •Water-Drive Reservoirs
- •Коллекторы с газонапорным режимом
- •A crossword puzzle
- •Chapter III
- •Exploration Methods
- •How to Extract Oil
- •Joint usage of s-waves and p-waves
- •Seismic noises
- •Types of waves
- •Drilling mud
- •Text 1 Drilling
- •Text 2 Tools for core taking
- •Straight hole drilling
- •Text 1 blowout control
- •Text 2 well drilling equipment
- •Chapter V well design and well head equipment
- •Drilling Rig Components
- •Rig system
- •Hoisting system components
- •Text a Rotary system components
- •2) Read and translate the text b "Rotary system components". Define what is it in bold in each paragraph using the words before the text.
- •Circulating System
- •Text 1 emergency shut down systems
- •Text 2 wellhead
- •Chapter VI well completion and woRкOver operations
- •Completion
- •Fishing tools
- •Text 1 Well killing fluids
- •Text 2 Well workover
- •Chapter VII oil production
- •Production
- •Artificial lift
- •Text 1 electrical submersible pumps
- •Text 2 fluid injection
- •Chapter VIII oil treatment, transportation and storage
- •Types of storage tanks
- •Bolted tanks
- •Tank battery operation
- •Oil gathering facilities
- •Selection of separator internals
- •Замеры емкости
- •Chapter II pipeline valves and fittings
- •Pipe Joints and Fittings
- •Valve body
- •Choke replacement
- •Maintenance of stop devices
- •Chapter III oil refining
- •Heat content
- •Refining methods
- •Gas fractionation plants
- •Chapter IV health, safety, environment
- •Health, safety, environment
- •Bp's 8 golden rules of safety
- •Sour gas
- •Text 1 acid treatment
- •Text 2 well service
- •Text 3 drilling rig
- •Chapter VI
- •The impact of mining and oil extraction on the environment
- •Chapter VII
- •The effect of extracting, delivering and using petroleum products on the environment
- •Drilling contractors
- •Service and supply companies
- •Unit III chapter I main parts of a rotary rig
- •Chapter II the hoisting system
- •Chapter III the fluid circulating system
- •Chapter IV the rotary system
- •Chapter V the well control system
- •Chapter VI well monitoring system
- •Chapter VII special marine equipment
- •Chapter VIII rotary drilling bits
- •Part II
- •Creekology
- •How are oil and natural gas produced?"
- •Range of explored depths
- •Diamond bits
- •Spontaneous well deviation
- •Water flooding
- •Completion methods
- •Text 10
- •Formation stimulation
- •Text 11
- •Tank gaging
- •Text 12
- •Pipeline valves
- •Text 13
- •Refineries
- •Text 14
- •Migration and Accumulation of Petroleum
- •Text 15
- •Porosity
- •Text 16
- •Permeability
- •Text 17
- •Wettability
- •Text 18
- •Wire Well Logging Techniques
- •Conclusion/ Заключение
Text 1 electrical submersible pumps
The design of a submersible pumping unit, under most conditions, is not a difficult task, especially if reliable data are available. Although, if the information, especially that related to the well’s capacity, is poor, the design will usually be important. Bad data often result in a misapplied pump and costly operation. A misapplied pump may operate outside the recommended range, overload or underload the motor, or ruin the well at a rapid rate, which may result in formation damage. On the other extreme, the pump may not be large enough to provide the desired production rate.
Too often data from other wells in the same field or in a nearby area are used, assuming that wells from the same producing horizon will have similar characteristics. Unfortunately for the engineer sizing the submersible installations, oil wells are much like fingerprints, that is no two are quite alike.
The actual selection procedure can vary significantly depending on the well fluid properties. The three major types of ESP applications are:
High water cut wells producing fresh water or brine;
Wells with multi-phase flow;
Wells producing highly viscous fluids.
The performance of a centrifugal pump is considerably affected by the gas. As long as the gas remains in solution, the pump behaves normally as if pumping a liquid of low density. However, the pump starts producing lower than the normal as the gas-to-liquid ratio (at pumping conditions) increases beyond a certain “critical” value (usually about 10-15%). It is mainly due to the separation of the liquid and gas phases and a slippage between the two phases.
This phenomenon has not been well studied and there is no general correlation describing the effect of free gas on pump performance. A submersible pump is usually selected by assuming no slippage between the two phases.
Ideally, a well would be produced with a submergence pressure above the bubble point pressure to keep any gases in solution at the pump intake. This is typically not possible, so the gases must be separated from other fluids prior to pump intake to achieve maximum system efficiency.
Text 2 fluid injection
The practice of injecting gas and water underground has become an important part of oil-producing operations. The injection of gas into formation increases recovery of oil, and sometimes results in a saving of natural gas. Water is injected into underground formations for two reasons. One is to dispose salt water that is produced with oil. The other is to increase the amount of oil recovered by injecting water into a producing formation.
Injection of gas requires the use of compressors to raise the pressure of the gas so that it will go into the wells, which take the gas to the producing formation. Water can sometimes be injected into an underground formation by gravity, but in many cases a pump is necessary in order to inject water at the rate desired. Pumping is usually required where water is injected into a producing formation for a water-flood or pressure-maintenance program.
For water flood projects water is injected into certain wells to flush oil from the reservoir rock. In some cases, oil recovery may exceed by a large factor that realized during original production.
Thermal processes include the concept of burning some of the oil in a reservoir.
Wasteful at first glance, the process actually uses some of the oil that could not be produced by any known method as an energy source to increase the total amount of oil recovered. Other thermal methods use either heated water or steam.
EXERCISE 10 Answer questions about the texts.
In what cases the design of a submersible pump can be important?
What does a misapplied pump result in?
What is the most common mistake made when reviewing well data?
What does the actual pump selection procedure depend upon?
What are the three major types of ESP applications?
What does considerably affect ESP performance?
What is the ideal condition for a well production?
What are the reasons of water injection into underground?
What are compressors used for?
What do other thermal processes include?
EXERCISE 11 Give the Russian equivalents to the following word combinations
Bubble point
Fluid
Submersible
Injection
Maintenance
Water injection
Pressure
Thermal processes
Oil-producing operations
Producing formation
Water-flood
Energy source
EXERCISE 12 Are the following statements true or false? Correct the false ones with the right information and discuss your answers with a partner.
The design of a submersible pumping unit, under most conditions, is not a difficult task, especially if reliable data are available.
Too often data from other wells in the same field aren’t used, assuming that wells from the same producing horizon will have similar characteristics.
As long as the gas remains in solution, the pump behaves normally as if pumping a liquid of low density.
The injection of gas into formation reduces recovery of oil, and results in a saving of natural gas.
Injection of gas requires the use of compressors to raise the pressure of the gas so that it will go into the wells, which take the gas to the producing formation.
EXERCISE 13 Make up sentences out of two parts from the table:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EXERCISE 14 Translate into English in written form.
Закачка газа в пласт увеличивает добычу нефти, а иногда приводит к экономии природного газа.
Закачка газа требует использования компрессоров для повышения давления газа таким образом, чтобы он вошел в скважины, которые принимают газ в продуктивный пласт.
Вода закачивается в подземные формации по двум причинам: расположение соленой воды, которая производится с нефтью, увеличение количества нефти, извлекаемой при впрыскивании воды в продуктивный пласт.
Вода может иногда быть введена в подземную формацию под действием силы тяжести, но во многих случаях насос необходим для того, чтобы впрыскивать воду в желаемом количестве.
Практика закачки газа и воды под землю стало важной частью нефтедобывающих операций.
