- •Математическая статистика для психологов
- •Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами, его значимость для профессиональной подготовки выпускников
- •Стохастичность и вероятность Стохастический характер реальности
- •Современное философское понимание вероятности
- •Роль математики в развитии понятия о вероятности
- •Вероятность как мера случайности
- •Предмет теории вероятностей
- •Определения понятия вероятности
- •Случайные события
- •Классическое определение вероятности
- •Геометрическое определение вероятности
- •Статистическое определение вероятности
- •Субъективная вероятность
- •Алгебра случайных событий
- •Аксиомы алгебры случайных событий
- •Отношения между случайными событиями
- •Простейшие свойства вероятности, помогающие их вычислять
- •Условная вероятность, независимые события и формула умножения вероятностей
- •Формула сложения вероятностей
- •Случайные величины Понятие функции в математике
- •Понятие случайной величины
- •Типы случайных величин
- •Закон распределения случайной величины
- •Ряд распределения дискретной случайной величины
- •Функция распределения случайной величины и её свойства
- •Плотность распределения вероятностей случайной величины
- •Математическое ожидание случайной величины и его свойства
- •Математическое ожидание дискретной случайной величины с конечным числом значений
- •Математическое ожидание дискретной случайной величины с бесконечным числом значений
- •Математическое ожидание непрерывной случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины и его свойства
- •Свойства дисперсии
- •Другие характеристики центральных тенденций и изменчивости распределений случайных величин
- •Медиана
- •Квантили
- •Характеристики формы распределения случайной величины Понятие моментов случайной величины и z-оценки
- •Коэффициент асимметрии случайной величины
- •Эксцесс случайной величины
- •Совместные распределения случайных величин
- •Ряд распределения двумерной дискретной случайной величины
- •Плотность распределения для двумерной непрерывной случайной величины
- •Зависимые и независимые случайные величины
- •Понятие ковариации двух случайных величин и его свойства
- •Коэффициент корреляции двух случайных величин и его свойства
- •Законы больших чисел
- •Сходимость по вероятности
- •Неравенства Чебышева
- •Теорема Бернулли
- •Центральная предельная теорема
- •Понятие нормального распределения
- •Стандартное нормальное распределение
- •Правило трёх сигм
- •Нормальное распределение в реальном мире
- •Функция Лапласа
- •Вероятность попадания значения нормальной случайной величины в заданный промежуток
- •Вероятность отклонения значения нормальной случайной величины от математического ожидания
- •Прикладная статистика в психологии Происхождение и история статистики
- •Современное понимание статистики
- •Общее представление о прикладной статистике
- •Основные разделы прикладной статистики
- •Прикладная статистика как способ проверки вероятностных моделей
- •Специфика использования прикладной статистики в психологии
- •Стандарты обработки данных, нормативы представления результатов анализа данных в научной психологии
- •Шкалы измерений, связи и зависимости Научное знание и задачи науки
- •Моделирование в науке
- •Признаки и переменные
- •Понятие измерения в современной науке
- •Мера, метрика, показатель
- •Шкалы измерений, типы данных и переменных
- •Графическое представление данных
- •Зависимые и независимые переменные. Связи и зависимости: причинная и функциональная.
- •Понятие анализа данных, его цели и задачи. Связь анализа данных со статистикой
- •Описательная статистика Понятие описательной статистики
- •Ряд распределения
- •Полигон частот. Выборочная функция распределения и гистограмма.
- •Средние характеристики и характеристики рассеяния рядов распределений
- •Аналитическая статистика Понятие аналитической статистики, её составляющие
- •Выборочный метод в прикладной статистике Выборка как модель генеральной совокупности. Цели и задачи выборочного метода.
- •Статистическое понимание случайной выборки
- •Основные этапы формирования выборки
- •Единица отбора выборки
- •Определение объема выборки
- •Типы выборки и методы отбора Многоступенчатая и одноступенчатая выборки
- •Случайные и неслучайные выборки
- •Выборки для психологических исследований
- •Эмпирическая функция распределения и её свойства
- •Статистические оценки параметров генеральной совокупности
- •Параметры генеральной совокупности и выборочные статистики
- •Понятие точечной оценки и её свойства
- •Выборочное среднее как статистическая оценка среднего в генеральной совокупности
- •Статистическая оценка генеральной дисперсии
- •Статистическая оценка вероятности или генеральной доли
- •Понятие интервальной оценки
- •Доверительный интервал и доверительная вероятность
- •Основные задачи интервального оценивания
- •Доверительный интервал для математического ожидания при известном стандартном квадратичном отклонении
- •Доверительный интервал для математического ожидания при неизвестном стандартном квадратичном отклонении
- •Доверительный интервал для генеральной доли
- •Проверка статистических гипотез Понятие статистической проверки гипотез, её цели, задачи и основные понятия
- •Статистический критерий для проверки статистической гипотезы
- •Критическая область критерия: односторонняя и двусторонняя
- •Основной принцип проверки статистической гипотезы
- •Этапы проверки статистических гипотез, минимальный уровень значимости
- •Проверка статистической гипотезы о среднем
- •Проверка статистической гипотезы о равенстве средних
- •Проверка статистической гипотезы о генеральной доле
- •Проверка статистической гипотезы о равенстве долей или вероятностей
- •Программное обеспечение прикладной статистики Информационные технологии расчётов в электронных таблицах (пример - Microsoft Excel)
- •Статистические функции и их использование в Microsoft Excel
- •Построение диаграмм и графиков в Microsoft Excel
- •Информационные технологии статистической обработки данных
Проверка статистической гипотезы о генеральной доле
Пусть генеральная совокупность содержит элементов, а из них элементов обладают некоторым свойством. Тогда доля элементов в генеральной совокупности, обладающая этим свойством, равна . Эту долю можно интерпретировать как вероятность того, что произвольно и случайно взятый из генеральной совокупности элемент будет обладать этим свойством. Величина называется генеральной долей.
Рассмотрим
процедуру проверки статистической
гипотезы о том, что генеральная доля
равна какому-то наперёд заданному числу
.
Это означает, что ставится задача
проверить нулевую гипотезу
.
В качестве альтернативной гипотезы
можно выбрать следующие варианты:
- двусторонняя,
- односторонняя,
- тоже односторонняя.
Если построена выборка из элементов, а в ней этим свойством обладает элементов, то доля элементов выборки, обладающих этим свойством, будет равна . Эта доля называется выборочной долей или относительной частотой этого свойства в выборке. Можно доказать, что выборочная доля является несмещённой, состоятельной и эффективной оценкой генеральной доли для соответствующего свойства.
Можно
доказать, что если объём выборки
достаточно велик, в частности, превышает
500 элементов, выборочная доля
является случайной величиной,
распределённой по закону, близкому к
нормальному. В таком случае в качестве
статистического критерия для проверки
нулевой гипотезы можно использовать
-оценку,
имеющую стандартное нормальное
распределение:
.
Если
нулевая гипотеза верна, то
.
Следовательно,
.
И тогда статистический критерий для
проверки нулевой гипотезы получает
такой вид:
.
Вычисленное значение -оценки следует сравнить с критическим. А вывод о том, принимать или отклонять нулевую гипотезу определяется тем, как сформулированы альтернативные гипотезы.
Пусть уровень значимости равен . Напомним, что уровень значимости задаёт исследователь из своих содержательных соображений, используя свой опыт проверки аналогичных гипотез. По таблицам или, например, в Excel необходимо определить значение - границу критической области. Это значение аргумента, при котором стандартная нормальная величина принимает значение .
Случай 1. Альтернативная гипотеза представлена двусторонним неравенством (двусторонняя гипотеза).
Критическая область для такой альтернативной гипотезы будет задаваться неравенством: . Если это неравенство выполняется, нет оснований принимать нулевую гипотезу, т.е. она должна быть отклонена, поскольку значение статистического критерия попадает в критическую область.
Случай 2. Альтернативная гипотеза представлена односторонним неравенством (односторонняя гипотеза).
Критическая область для такой альтернативной гипотезы будет задаваться неравенством: . Если это неравенство выполняется, нет оснований принимать нулевую гипотезу, т.е. она должна быть отклонена, поскольку значение статистического критерия попадает в критическую область.
Случай 3. Альтернативная гипотеза представлена односторонним неравенством (односторонняя гипотеза).
Критическая область для такой альтернативной гипотезы будет задаваться неравенством: . Если это неравенство выполняется, нет оснований принимать нулевую гипотезу, т.е. она должна быть отклонена, поскольку значение статистического критерия попадает в критическую область.
Пример. В выборке из 1000 респондентов оказалось 200 голубоглазых. Известно, что в генеральной совокупности доля голубоглазых составляет 0,25. Можно ли на 95% уровне значимости утверждать, что сформированная выборка является репрезентативной по цвету глаз?
Нулевой
гипотезой будем считать равенство доли
голубоглазых в генеральной совокупности
и в выборке, а альтернативной двусторонней
гипотезой – что эти доли не равны.
Вычисляем значение критерия, т.е. Z-оценку
в данном случае при объёме выборки
,
доле голубоглазых в генеральной
совокупности
и их доле в выборке
:
.
При этом по таблицам или в Microsoft Excel,
используя функцию =НОРМСТОБР, можно
найти критическое значение этого
критерия для уровня значимости 0,95. Это
критическое значение равно 1,6449, оно
существенно меньше по модулю, чем
вычисленное значение критерия для
сравнения долей голубоглазых в генеральной
совокупности и в выборке. Поэтому нет
оснований принимать нулевую гипотезу,
получается, что она должна быть отвергнута,
и на уровне значимости 0,95 эти доли
существенно различаются.
