- •Математическая статистика для психологов
- •Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами, его значимость для профессиональной подготовки выпускников
- •Стохастичность и вероятность Стохастический характер реальности
- •Современное философское понимание вероятности
- •Роль математики в развитии понятия о вероятности
- •Вероятность как мера случайности
- •Предмет теории вероятностей
- •Определения понятия вероятности
- •Случайные события
- •Классическое определение вероятности
- •Геометрическое определение вероятности
- •Статистическое определение вероятности
- •Субъективная вероятность
- •Алгебра случайных событий
- •Аксиомы алгебры случайных событий
- •Отношения между случайными событиями
- •Простейшие свойства вероятности, помогающие их вычислять
- •Условная вероятность, независимые события и формула умножения вероятностей
- •Формула сложения вероятностей
- •Случайные величины Понятие функции в математике
- •Понятие случайной величины
- •Типы случайных величин
- •Закон распределения случайной величины
- •Ряд распределения дискретной случайной величины
- •Функция распределения случайной величины и её свойства
- •Плотность распределения вероятностей случайной величины
- •Математическое ожидание случайной величины и его свойства
- •Математическое ожидание дискретной случайной величины с конечным числом значений
- •Математическое ожидание дискретной случайной величины с бесконечным числом значений
- •Математическое ожидание непрерывной случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины и его свойства
- •Свойства дисперсии
- •Другие характеристики центральных тенденций и изменчивости распределений случайных величин
- •Медиана
- •Квантили
- •Характеристики формы распределения случайной величины Понятие моментов случайной величины и z-оценки
- •Коэффициент асимметрии случайной величины
- •Эксцесс случайной величины
- •Совместные распределения случайных величин
- •Ряд распределения двумерной дискретной случайной величины
- •Плотность распределения для двумерной непрерывной случайной величины
- •Зависимые и независимые случайные величины
- •Понятие ковариации двух случайных величин и его свойства
- •Коэффициент корреляции двух случайных величин и его свойства
- •Законы больших чисел
- •Сходимость по вероятности
- •Неравенства Чебышева
- •Теорема Бернулли
- •Центральная предельная теорема
- •Понятие нормального распределения
- •Стандартное нормальное распределение
- •Правило трёх сигм
- •Нормальное распределение в реальном мире
- •Функция Лапласа
- •Вероятность попадания значения нормальной случайной величины в заданный промежуток
- •Вероятность отклонения значения нормальной случайной величины от математического ожидания
- •Прикладная статистика в психологии Происхождение и история статистики
- •Современное понимание статистики
- •Общее представление о прикладной статистике
- •Основные разделы прикладной статистики
- •Прикладная статистика как способ проверки вероятностных моделей
- •Специфика использования прикладной статистики в психологии
- •Стандарты обработки данных, нормативы представления результатов анализа данных в научной психологии
- •Шкалы измерений, связи и зависимости Научное знание и задачи науки
- •Моделирование в науке
- •Признаки и переменные
- •Понятие измерения в современной науке
- •Мера, метрика, показатель
- •Шкалы измерений, типы данных и переменных
- •Графическое представление данных
- •Зависимые и независимые переменные. Связи и зависимости: причинная и функциональная.
- •Понятие анализа данных, его цели и задачи. Связь анализа данных со статистикой
- •Описательная статистика Понятие описательной статистики
- •Ряд распределения
- •Полигон частот. Выборочная функция распределения и гистограмма.
- •Средние характеристики и характеристики рассеяния рядов распределений
- •Аналитическая статистика Понятие аналитической статистики, её составляющие
- •Выборочный метод в прикладной статистике Выборка как модель генеральной совокупности. Цели и задачи выборочного метода.
- •Статистическое понимание случайной выборки
- •Основные этапы формирования выборки
- •Единица отбора выборки
- •Определение объема выборки
- •Типы выборки и методы отбора Многоступенчатая и одноступенчатая выборки
- •Случайные и неслучайные выборки
- •Выборки для психологических исследований
- •Эмпирическая функция распределения и её свойства
- •Статистические оценки параметров генеральной совокупности
- •Параметры генеральной совокупности и выборочные статистики
- •Понятие точечной оценки и её свойства
- •Выборочное среднее как статистическая оценка среднего в генеральной совокупности
- •Статистическая оценка генеральной дисперсии
- •Статистическая оценка вероятности или генеральной доли
- •Понятие интервальной оценки
- •Доверительный интервал и доверительная вероятность
- •Основные задачи интервального оценивания
- •Доверительный интервал для математического ожидания при известном стандартном квадратичном отклонении
- •Доверительный интервал для математического ожидания при неизвестном стандартном квадратичном отклонении
- •Доверительный интервал для генеральной доли
- •Проверка статистических гипотез Понятие статистической проверки гипотез, её цели, задачи и основные понятия
- •Статистический критерий для проверки статистической гипотезы
- •Критическая область критерия: односторонняя и двусторонняя
- •Основной принцип проверки статистической гипотезы
- •Этапы проверки статистических гипотез, минимальный уровень значимости
- •Проверка статистической гипотезы о среднем
- •Проверка статистической гипотезы о равенстве средних
- •Проверка статистической гипотезы о генеральной доле
- •Проверка статистической гипотезы о равенстве долей или вероятностей
- •Программное обеспечение прикладной статистики Информационные технологии расчётов в электронных таблицах (пример - Microsoft Excel)
- •Статистические функции и их использование в Microsoft Excel
- •Построение диаграмм и графиков в Microsoft Excel
- •Информационные технологии статистической обработки данных
Доверительный интервал для математического ожидания при неизвестном стандартном квадратичном отклонении
Пусть теперь остаётся неизвестным как значение математического ожидания некоторого параметра генеральной совокупности , так и значение его дисперсии в этой генеральной совокупности. Но, как и ранее, нам необходимо найти значение математического ожидания этого параметра генеральной совокупности .
Как и ранее, предполагаем, что значения этого параметра в генеральной совокупности распределены по нормальному закону. Это не всегда легко проверить. Часто для проверки используются те или иные варианты законов больших чисел. Обычно, например, распределения, близкие к нормальным получаются в ситуациях действия многих относительно слабых и независимых факторов, которые могут определить значение этого параметра в генеральной совокупности.
Напомним, что существует несмещённая оценка стандартного квадратичного отклонения значений рассматриваемого параметра генеральной совокупности, и такой оценкой является величина .
Построим
новую случайную величину
.
Можно доказать, что эта случайная
величина
имеет распределение Стьюдента с
степенями свободы. Значения этой
случайной величины будем обозначать
через
.
К
распределению Стьюдента целесообразно
перейти потому, что как доказывается
оно не зависит от неизвестных нам
параметров генеральной совокупности
и
.
Тогда аналогично предыдущему можно
решить уравнение
.
Решением этого уравнения является
- значение аргумента функции распределения
Стьюдента, для которого значение равно
при числе степеней свободы
.
Это значение аргумента
можно найти либо по таблицам функции
распределения Стьюдента, либо расчётным
путём из функции, обратной к функции
распределения Стьюдента. Последняя
возможность имеется, например, в
электронных таблицах Microsoft Excel. Нужно
только помнить, что значения функции
распределения Стьюдента нужно использовать
для
степеней свободы, т.е. на 1 меньшую объёма
выборки. Можно доказать, что при объёме
выборки
в расчётах интервальных оценок можно
пользоваться функцией Лапласа вместо
функции распределения Стьюдента для
степеней свободы.
После
определения
можно утверждать, что с доверительной
вероятностью
неизвестное значение средней параметра
генеральной совокупности находится в
доверительном интервале
,
т.е.
,
где
- это реализация средней в сделанной
выборке из генеральной совокупности,
а
- это несмещённая оценка стандартного
квадратичного отклонения значений
рассматриваемого параметра генеральной
совокупности, сделанная по этой выборке.
Таким образом, последовательность действий для определения доверительного интервала математического ожидания некоторого параметра в генеральной совокупности при неизвестном значении дисперсии распределения этого параметра генеральной совокупности с заданной доверительной вероятностью должна быть следующей.
Вычисляем несмещённую оценку стандартного квадратичного отклонения значений рассматриваемого параметра генеральной совокупности .
По таблицам t-распределения Стьюдента или вычислениями в Microsoft Excel находим такое значение , для которого
.
Нужно использовать так называемую
двустороннюю постановку вопроса, чтобы
доверительная вероятность
определяла ширину всего доверительного
интервала, а не его половины. В случае
t-распределения Стьюдента
вычислять половину доверительной
вероятности не следует.
Вычисляется половина доверительного интервала по формуле
.Доверительный интервал записывается в виде или .
На этом вычисление доверительного интервала при данных условиях заканчивается.
