- •Математическая статистика для психологов
- •Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами, его значимость для профессиональной подготовки выпускников
- •Стохастичность и вероятность Стохастический характер реальности
- •Современное философское понимание вероятности
- •Роль математики в развитии понятия о вероятности
- •Вероятность как мера случайности
- •Предмет теории вероятностей
- •Определения понятия вероятности
- •Случайные события
- •Классическое определение вероятности
- •Геометрическое определение вероятности
- •Статистическое определение вероятности
- •Субъективная вероятность
- •Алгебра случайных событий
- •Аксиомы алгебры случайных событий
- •Отношения между случайными событиями
- •Простейшие свойства вероятности, помогающие их вычислять
- •Условная вероятность, независимые события и формула умножения вероятностей
- •Формула сложения вероятностей
- •Случайные величины Понятие функции в математике
- •Понятие случайной величины
- •Типы случайных величин
- •Закон распределения случайной величины
- •Ряд распределения дискретной случайной величины
- •Функция распределения случайной величины и её свойства
- •Плотность распределения вероятностей случайной величины
- •Математическое ожидание случайной величины и его свойства
- •Математическое ожидание дискретной случайной величины с конечным числом значений
- •Математическое ожидание дискретной случайной величины с бесконечным числом значений
- •Математическое ожидание непрерывной случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины и его свойства
- •Свойства дисперсии
- •Другие характеристики центральных тенденций и изменчивости распределений случайных величин
- •Медиана
- •Квантили
- •Характеристики формы распределения случайной величины Понятие моментов случайной величины и z-оценки
- •Коэффициент асимметрии случайной величины
- •Эксцесс случайной величины
- •Совместные распределения случайных величин
- •Ряд распределения двумерной дискретной случайной величины
- •Плотность распределения для двумерной непрерывной случайной величины
- •Зависимые и независимые случайные величины
- •Понятие ковариации двух случайных величин и его свойства
- •Коэффициент корреляции двух случайных величин и его свойства
- •Законы больших чисел
- •Сходимость по вероятности
- •Неравенства Чебышева
- •Теорема Бернулли
- •Центральная предельная теорема
- •Понятие нормального распределения
- •Стандартное нормальное распределение
- •Правило трёх сигм
- •Нормальное распределение в реальном мире
- •Функция Лапласа
- •Вероятность попадания значения нормальной случайной величины в заданный промежуток
- •Вероятность отклонения значения нормальной случайной величины от математического ожидания
- •Прикладная статистика в психологии Происхождение и история статистики
- •Современное понимание статистики
- •Общее представление о прикладной статистике
- •Основные разделы прикладной статистики
- •Прикладная статистика как способ проверки вероятностных моделей
- •Специфика использования прикладной статистики в психологии
- •Стандарты обработки данных, нормативы представления результатов анализа данных в научной психологии
- •Шкалы измерений, связи и зависимости Научное знание и задачи науки
- •Моделирование в науке
- •Признаки и переменные
- •Понятие измерения в современной науке
- •Мера, метрика, показатель
- •Шкалы измерений, типы данных и переменных
- •Графическое представление данных
- •Зависимые и независимые переменные. Связи и зависимости: причинная и функциональная.
- •Понятие анализа данных, его цели и задачи. Связь анализа данных со статистикой
- •Описательная статистика Понятие описательной статистики
- •Ряд распределения
- •Полигон частот. Выборочная функция распределения и гистограмма.
- •Средние характеристики и характеристики рассеяния рядов распределений
- •Аналитическая статистика Понятие аналитической статистики, её составляющие
- •Выборочный метод в прикладной статистике Выборка как модель генеральной совокупности. Цели и задачи выборочного метода.
- •Статистическое понимание случайной выборки
- •Основные этапы формирования выборки
- •Единица отбора выборки
- •Определение объема выборки
- •Типы выборки и методы отбора Многоступенчатая и одноступенчатая выборки
- •Случайные и неслучайные выборки
- •Выборки для психологических исследований
- •Эмпирическая функция распределения и её свойства
- •Статистические оценки параметров генеральной совокупности
- •Параметры генеральной совокупности и выборочные статистики
- •Понятие точечной оценки и её свойства
- •Выборочное среднее как статистическая оценка среднего в генеральной совокупности
- •Статистическая оценка генеральной дисперсии
- •Статистическая оценка вероятности или генеральной доли
- •Понятие интервальной оценки
- •Доверительный интервал и доверительная вероятность
- •Основные задачи интервального оценивания
- •Доверительный интервал для математического ожидания при известном стандартном квадратичном отклонении
- •Доверительный интервал для математического ожидания при неизвестном стандартном квадратичном отклонении
- •Доверительный интервал для генеральной доли
- •Проверка статистических гипотез Понятие статистической проверки гипотез, её цели, задачи и основные понятия
- •Статистический критерий для проверки статистической гипотезы
- •Критическая область критерия: односторонняя и двусторонняя
- •Основной принцип проверки статистической гипотезы
- •Этапы проверки статистических гипотез, минимальный уровень значимости
- •Проверка статистической гипотезы о среднем
- •Проверка статистической гипотезы о равенстве средних
- •Проверка статистической гипотезы о генеральной доле
- •Проверка статистической гипотезы о равенстве долей или вероятностей
- •Программное обеспечение прикладной статистики Информационные технологии расчётов в электронных таблицах (пример - Microsoft Excel)
- •Статистические функции и их использование в Microsoft Excel
- •Построение диаграмм и графиков в Microsoft Excel
- •Информационные технологии статистической обработки данных
Типы выборки и методы отбора Многоступенчатая и одноступенчатая выборки
Выборка делится на одноступенчатую и многоступенчатую по количеству ступеней в отборе. Одноступенчатая выборка предполагает, что из генеральной совокупности сразу осуществляется отбор респондентов для опроса. Процедура же многоступенчатой выборки включает несколько ступеней, при этом на каждой из них единица отбора меняется.
Многоступенчатая выборка, как правило, осуществляется не в локальных масштабах, а в региональных, общенациональных, международных. Использовать одноступенчатую выборку в таких масштабах нерационально, потому что сложно искать респондентов или испытуемых, распределённых в такой выборке по огромным пространствам. Кроме того, одноступенчатая выборка на больших пространствах является очень дорогой в реализации в исследованиях. Многоступенчатая выборка в этом плане много более экономична, потому что респонденты и испытуемые концентрируются в существенно более компактных районах, чем в одноступенчатой выборке, что упрощает достижение объектов исследования – респондентов или испытуемых.
Случайные и неслучайные выборки
Выборки делятся на два больших типа: вероятностные или случайные и невероятностные или неслучайные.
Выборка случайная – вероятностный метод выборки, при котором отбор производится из всей массы единиц генеральной совокупности и каждый элемент имеет одинаковую вероятность попадания в выборку, которую можно рассчитать как отношение размера выборки к размеру генеральной совокупности. Только для таких выборок имеет смысл понятие репрезентативная выборка – выборка, состав и структура которой по своим существенным характеристикам соответствующая составу и структуре генеральной совокупности. А репрезентативность понимается как степень соответствия количественных характеристик, полученных в результате выборочного наблюдения, характеристикам, свойственным всей генеральной совокупности.
Выборка неслучайная – это невероятностый метод выборки, при котором отбор производится с учетом целей и задач исследования.
Вероятностные выборки в свою очередь имеют несколько типов:
Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.
Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.
Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина K определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.
Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т.п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.
Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.
Многоступенчатая выборка. Это тип вероятностной выборки, в которой на всех ступенях осуществляется отбор объектов репрезентации, а наблюдение единиц производится на последней такой ступени. Необходимость многоступенчатого отбора вызвана, как правило, отсутствием информации по всей генеральной совокупности о единицах наблюдения, либо желанием оптимизировать затраты на проведение исследования за счёт включения в него только отдельных объектов репрезентации на каждой ступени отбора. При многоступенчатом отборе для организации первой ступени достаточно иметь информацию о распределении ряда интересующих признаков объектов репрезентации на первой ступени. Для организации второй ступени необходима информация только об объектах репрезентации, отобранных на первой ступени. Многоступенчатая выборка в отличие от одноступенчатой выборки предполагает, что для каждой ступени отбираются различные промежуточные объекты репрезентации, соотносящиеся по принципу «матрешки» (например, республика-область-район-микрорайон-квартал-дом-квартира-семья). Многоступенчатая выборка, основанная на отборе естественных единиц (географические регионы, политико-административные единицы, предприятия, учреждения, учебные заведения и пр.), обладает большей экономичностью, чем одноступенчатая. Кроме того, при таком подходе проведение выборочного обследования может быть облегчено сокращением территориальных границ обследования, а также и другими упрощениями. Многоступенчатая выборка, наряду с преимуществами, имеет и недостатки. Так, погрешности, допущенные в процессе организации последующих ступеней, уже никак нельзя откорректировать. Если предположить, например, что первая ступень охватывает неполное количество к тому же неоднородных по отношению друг к другу единиц (относительно цели исследования), то в результате исследования могут возникнуть значительные искажения. При формировании многоступенчатой выборки необходимо прежде всего убедиться, не образовались ли ошибки смещения, которые представляют собой наиболее распространенный вид ошибок в социологическом или экономическом исследовании. При этом следует учесть, что ошибки репрезентативности для многоступенчатой выборки почти невозможно точно определить в отличие от одноступенчатых. При такой выборке усложняется вычисление теоретических ошибок репрезентативности, к тому же значительно возрастает величина ошибок репрезентативности по сравнению с одноступенчатой выборкой. Это неизбежно меняет стратегию отбора единиц наблюдения.
«Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки – с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.
Невероятностные выборки, в которых отбор осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д., также имеют несколько типов:
Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Плюсы: обычно такие выборки репрезентативны, но эта репрезентативность должна обосновываться по результатам исследования, а не по формулам случайной выборки. Минусы: применение данного способа построения выборки возможно при наличии достаточно полной информации о генеральной совокупности.
Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- радио- опросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.
Маршрутный опрос – часто используется в социологии или этнологии, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.
Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.
