- •Математическая статистика для психологов
- •Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами, его значимость для профессиональной подготовки выпускников
- •Стохастичность и вероятность Стохастический характер реальности
- •Современное философское понимание вероятности
- •Роль математики в развитии понятия о вероятности
- •Вероятность как мера случайности
- •Предмет теории вероятностей
- •Определения понятия вероятности
- •Случайные события
- •Классическое определение вероятности
- •Геометрическое определение вероятности
- •Статистическое определение вероятности
- •Субъективная вероятность
- •Алгебра случайных событий
- •Аксиомы алгебры случайных событий
- •Отношения между случайными событиями
- •Простейшие свойства вероятности, помогающие их вычислять
- •Условная вероятность, независимые события и формула умножения вероятностей
- •Формула сложения вероятностей
- •Случайные величины Понятие функции в математике
- •Понятие случайной величины
- •Типы случайных величин
- •Закон распределения случайной величины
- •Ряд распределения дискретной случайной величины
- •Функция распределения случайной величины и её свойства
- •Плотность распределения вероятностей случайной величины
- •Математическое ожидание случайной величины и его свойства
- •Математическое ожидание дискретной случайной величины с конечным числом значений
- •Математическое ожидание дискретной случайной величины с бесконечным числом значений
- •Математическое ожидание непрерывной случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины и его свойства
- •Свойства дисперсии
- •Другие характеристики центральных тенденций и изменчивости распределений случайных величин
- •Медиана
- •Квантили
- •Характеристики формы распределения случайной величины Понятие моментов случайной величины и z-оценки
- •Коэффициент асимметрии случайной величины
- •Эксцесс случайной величины
- •Совместные распределения случайных величин
- •Ряд распределения двумерной дискретной случайной величины
- •Плотность распределения для двумерной непрерывной случайной величины
- •Зависимые и независимые случайные величины
- •Понятие ковариации двух случайных величин и его свойства
- •Коэффициент корреляции двух случайных величин и его свойства
- •Законы больших чисел
- •Сходимость по вероятности
- •Неравенства Чебышева
- •Теорема Бернулли
- •Центральная предельная теорема
- •Понятие нормального распределения
- •Стандартное нормальное распределение
- •Правило трёх сигм
- •Нормальное распределение в реальном мире
- •Функция Лапласа
- •Вероятность попадания значения нормальной случайной величины в заданный промежуток
- •Вероятность отклонения значения нормальной случайной величины от математического ожидания
- •Прикладная статистика в психологии Происхождение и история статистики
- •Современное понимание статистики
- •Общее представление о прикладной статистике
- •Основные разделы прикладной статистики
- •Прикладная статистика как способ проверки вероятностных моделей
- •Специфика использования прикладной статистики в психологии
- •Стандарты обработки данных, нормативы представления результатов анализа данных в научной психологии
- •Шкалы измерений, связи и зависимости Научное знание и задачи науки
- •Моделирование в науке
- •Признаки и переменные
- •Понятие измерения в современной науке
- •Мера, метрика, показатель
- •Шкалы измерений, типы данных и переменных
- •Графическое представление данных
- •Зависимые и независимые переменные. Связи и зависимости: причинная и функциональная.
- •Понятие анализа данных, его цели и задачи. Связь анализа данных со статистикой
- •Описательная статистика Понятие описательной статистики
- •Ряд распределения
- •Полигон частот. Выборочная функция распределения и гистограмма.
- •Средние характеристики и характеристики рассеяния рядов распределений
- •Аналитическая статистика Понятие аналитической статистики, её составляющие
- •Выборочный метод в прикладной статистике Выборка как модель генеральной совокупности. Цели и задачи выборочного метода.
- •Статистическое понимание случайной выборки
- •Основные этапы формирования выборки
- •Единица отбора выборки
- •Определение объема выборки
- •Типы выборки и методы отбора Многоступенчатая и одноступенчатая выборки
- •Случайные и неслучайные выборки
- •Выборки для психологических исследований
- •Эмпирическая функция распределения и её свойства
- •Статистические оценки параметров генеральной совокупности
- •Параметры генеральной совокупности и выборочные статистики
- •Понятие точечной оценки и её свойства
- •Выборочное среднее как статистическая оценка среднего в генеральной совокупности
- •Статистическая оценка генеральной дисперсии
- •Статистическая оценка вероятности или генеральной доли
- •Понятие интервальной оценки
- •Доверительный интервал и доверительная вероятность
- •Основные задачи интервального оценивания
- •Доверительный интервал для математического ожидания при известном стандартном квадратичном отклонении
- •Доверительный интервал для математического ожидания при неизвестном стандартном квадратичном отклонении
- •Доверительный интервал для генеральной доли
- •Проверка статистических гипотез Понятие статистической проверки гипотез, её цели, задачи и основные понятия
- •Статистический критерий для проверки статистической гипотезы
- •Критическая область критерия: односторонняя и двусторонняя
- •Основной принцип проверки статистической гипотезы
- •Этапы проверки статистических гипотез, минимальный уровень значимости
- •Проверка статистической гипотезы о среднем
- •Проверка статистической гипотезы о равенстве средних
- •Проверка статистической гипотезы о генеральной доле
- •Проверка статистической гипотезы о равенстве долей или вероятностей
- •Программное обеспечение прикладной статистики Информационные технологии расчётов в электронных таблицах (пример - Microsoft Excel)
- •Статистические функции и их использование в Microsoft Excel
- •Построение диаграмм и графиков в Microsoft Excel
- •Информационные технологии статистической обработки данных
Прикладная статистика в психологии Происхождение и история статистики
Слово «статистика» имеет латинское происхождение (от status – состояние). В средние века оно означало политическое состояние государства, что соответствовало позднелатинскому термину status - государство. В науку этот термин введен в XVIII в. немецким ученым Готфридом Ахенвалем. Собственно как наука статистика возникла только в XVII в., однако статистический учет существовал уже в глубокой древности. Так, известно, что еще за 5 тыс. лет до н.э. проводились переписи населения в Китае, осуществлялось сравнение военного потенциала разных стран, велся учет имущества граждан в Древнем Риме, затем – населения, домашнего имущества, земель в средние века.
У истоков статистической науки стояли две школы – немецкая описательная и английская школа политических арифметиков.
Представители описательной школы считали, что задачей статистики является описание достопримечательностей государства: территории, населения, климата, вероисповедания, ведения хозяйства и т.п. – только в словесной форме, без цифр и вне динамики, т.е. без отражения особенностей развития государств в те или иные периоды, а только лишь на момент наблюдения. Видными представителями описательной школы были Г. Конринг (1606–1661), Г. Ахенваль (1719–1772), А. Бюшинг (1724–1793) и др.
Политические арифметики ставили целью изучать общественные явления с помощью числовых характеристик – меры веса и числа. Это был принципиально новый этап развития статистической науки по сравнению со школой государствоведения, так как от описания явлений и процессов статистика перешла к их измерению и исследованию, к выработке вероятных гипотез будущего развития. Политические арифметики видели основное назначение статистики в изучении массовых общественных явлений, осознавали необходимость учета в статистическом исследовании требований закона больших чисел, поскольку закономерность может проявиться лишь при достаточно большом объеме анализируемой совокупности. Виднейшим представителем и основателем этого направления был В. Петти (1623–1687). История показала, что последнее слово в статистической науке осталось именно за школой политических арифметиков.
В XIX в. получило развитие учение бельгийского статистика А. Кетле, основоположника учения о средних величинах. Математическое направление в статистике развивалось в работах англичан Ф. Гальтона (1822–1911 гг.) и К. Пирсона (1857–1936 гг.), В. Госсета (1876–1937 гг.) более известного под псевдонимом Стьюдента, Р. Фишера (1890–1962 гг.) и др.
Прогрессу статистической методологии способствовали – труды российских статистиков – А.А. Чупрова (1874–1926 гг.), В.С. Немчинова (1894–1964 гг.), С.Г. Струмилина (1877–1974 гг.) и др.
Современное понимание статистики
Развитие статистической науки, расширение сферы практической статистической работы привели к изменению содержания самого понятия «статистика». В настоящее время данный термин употребляется в трех значениях:
1) Под статистикой понимают отрасль практической деятельности, которая имеет своей целью сбор, обработку, анализ и публикацию массовых данных о самых различных явлениях общественной жизни (в этом смысле «статистика» выступает как синоним словосочетания «статистический учет»);
2) Статистикой называют цифровой материал, служащий для характеристики какой-либо области общественных явлений или территориального распределения какого-то показателя;
3) Статистикой называется отрасль знания, особая научная дисциплина и соответственно учебный предмет в высших и средних специальных учебных заведениях.
Как научная дисциплина статистика имеет целью изучение действительности. Объект статистики – массовые процессы и явления, т.е. такие, которые затрагивают не отдельные объекты, а их совокупности. Предметом изучения статистики является количественная сторона массовых процессов и явлений в неразрывной связи с их качественной стороной, т.е. выявление качеств массовых процессов и явлений в анализе их количественных показателей. Отличительная особенность статистического подхода состоит в том, что данные, характеризующие статистическую совокупность в целом, получаются в результате обобщения информации о составляющих ее объектах. Термин статистика объединяет целый комплекс специализированных научных дисциплин, в котором по типам используемых методов можно выделить следующие основные направления: методы сбора данных; методы измерения; методы обработки и анализа данных.
Основными методами сбора данных являются полное или выборочное обследование генеральной совокупности и эксперимент. Основные дисциплины этого направления - теория выборки и планирование эксперимента.
Методы измерения предусматривают процедуры непосредственного получения информации об объектах, а также процедуры расчета показателей, характеризующих генеральную или выборочную совокупность. Теоретической основой этого направления является общая теория измерений, на базе которой разрабатываются специальные показатели, используемые в математической, а также в официальной и ведомственной статистики. Системы показателей являются основным содержанием таких дисциплин как общая теория статистики, социально-экономическая статистика и т.п.
Методы обработки и анализа данных включают теорию вероятностей, математическую статистику и их приложения в различных областях технических наук, а также наук о природе и обществе (прикладная статистика). Математическая статистика разрабатывает методы статистической обработки и анализа данных, занимается обоснованием и проверкой их валидности, эффективности, условий применения, робастности (устойчивости к нарушению условий применения) и т.п. Прикладная статистика выполняет три основные задачи - описание, обобщение, объяснение или/и прогнозирование - и, соответственно, включает три основные группы методов: методы описательной статистики, методы статистического вывода и методы анализа связей и зависимостей. Статистика дескриптивная или описательная предназначена для получения обобщенных характеристик выборочной совокупности. Методы статистического вывода позволяют корректно обобщать результаты выборочного исследования на генеральную совокупность. Наиболее обширная группа методов анализа связей предназначена для исследования парных и множественных связей между переменными, как корреляционных, так и причинных (это методы статистического анализа парных связей, многомерный статистический анализ и некоторые другие). В некоторых областях знаний приложения статистики столь специфичны, что их выделяют в самостоятельные научные дисциплины: теория надежности - в технических науках; эконометрика - в экономике; психометрия - в психологии, биометрия - в биологии и т.п. Такие дисциплины рассматривают специфичные для данной отрасли методы сбора и анализа данных.
Любое статистическое исследование предполагает сбор и обработку данных, поэтому статистические методы разного назначения практически всегда применяются комплексно. Хорошим примером такого применения является перепись населения, проводимая регулярно в большинстве стран мира, периодический сбор государственной статистики, который проводится во всех развитых странах мира и т.п.
