- •Р.З. Магарил Теоретические основы химических процессов переработки нефти
- •Термические процессы переработки нефти……………. 36
- •2. Основы теории газофазных термических реакций углеводородов……….. 36
- •3. Термические превращения углеводородов в газовой фазе 54
- •12. Гидрокрекинг…………………………………………………………….244
- •1 Введение. Химический состав нефтей
- •1.1. Фракционный состав нефтей
- •1.2. Бензиновые фракции
- •1.2.3. Циклоалканы
- •Гетероатомные соединения
- •1.2.6. Влияние химического состава бензинов на их антидетонационные свойства
- •1.8. Фракции легкого газойля
- •Групповой и структурно-групповой состав
- •Циклоалканы
- •1.3.4. Арены
- •1.3.5. Гетероатомные соединения
- •1.3.6. Влияние химического состава на некоторые свойства газойлей
- •1.4. Масляные фракции
- •Циклоалканы
- •1.4.3. Арены
- •1.4.4. Гетероатомные соединения
- •1.5. Гудроны
- •Групповой состав
- •Циклоалканы
- •I. Термические процессы переработки нефти
- •2. Основы теории газофазных термических реакций углеводородов
- •2.1. Молекулярные реакции
- •2.2. Термический распад молекул на радикалы
- •2.3. Бимолекулярное образование радикалов
- •2.4. Реакции радикалов
- •2.4.1. Замещение (отрыв атома водорода)
- •2.4.2. Присоединение
- •2.4.3. Распад
- •2.4.4. Изомеризация
- •2.5. Соотношение скоростей реакций радикалов
- •2.6. Цепные реакции
- •2.6.1. Термины теории неразветвленных реакций
- •2.6.2. Кинетика неразветвленных реакций
- •2.6.3. Влияние продуктов реакции на ее кинетику
- •2.7. Радикальные нецепные реакции
- •3. Термические превращения углеводородов в газовой фазе
- •3.1. Алканы
- •3.2. Циклоалканы
- •8.3. Алкены
- •3.3.3. Алкены с четырьмя и более атомами углерода в молекуле
- •8.4. Диены, триены и алкины
- •3.6. Сложные углеводородные смеси
- •3.7. Образование пироуглерода
- •3.8. Основы управления процессом пиролиза
- •3.8.1. Температура
- •3.8.2. Давление
- •3.8.4. Сырье
- •8.8.5. Особенности пиролиза в присутствии водорода
- •4. Термические превращения углеводородов в жидкой фазе
- •Концентрация реагирующих веществ
- •Клеточный эффект
- •4.1.3. Влияние сольватации
- •4.2. Образование нефтяного кокса
- •4.3. Основы управления процессами термической переработки нефтяного сырья при наличии жидкой фазы
- •4.3.1. Замедленное коксование
- •4.3.2. Коксование в слое теплоносителя
- •4.3.3. Термический крекинг
- •4.3.4. Производство окисленных битумов
- •II. Каталитические процессы переработки нефти
- •5. Основы технического катализа
- •5.1.2. Классификация каталитических реакций и катализаторов
- •Гомогенный и гетерогенный катализ
- •Активность и селективность катализаторов
- •5.1.5. Стабильность катализаторов
- •5.2. Кинетика газофазных реакций
- •Реакции на пористом катализаторе
- •5.4. Реакции на твердом катализаторе при наличии жидкой фазы
- •5.5. Реакции, катализируемые жидким катализатором
- •5.6. Кислотный катализ
- •5.6.1. Кислоты и сила кислот
- •5.6.3. Функция кислотности и скорость реакции
- •5.6.4. Влияние среды на кинетику реакций с участием ионов
- •5.6.5. Свойства карбкатионов
- •6. Алкилирование изоалканов алкенами
- •6.1. Термодинамика и механизм процесса
- •6.2. Основы управления процессом
- •6.2.2. Сырье
- •6.2.3. Температура
- •6.2.4. Содержание изобутана
- •6.2.5. Контакт между фазами и время реакции
- •6.2.6. Давление
- •7. Полимеризация алкенов с целью получения компонента бензина
- •7.1. Термодинамика и механизм процесса
- •7.2.1. Катализатор
- •Температура
- •Давление
- •7.2.4. Сырье
- •8.1.1. Алканы
- •8.1.2. Циклоалканы
- •8.1.3. Алкены
- •8.1.4. Арены
- •8.2. Катализаторы
- •8.2.1. Природные активные алюмосиликатные катализаторы
- •8.2.2. Синтетические аморфные алюмосиликатные катализаторы
- •8.2.3. Синтетические кристаллические алюмосиликатные катализаторы
- •8.2.4. Свойства катализаторов
- •8.3. Основы управления процессом
- •8.3.1. Температура
- •8.3.2. Время реакции
- •8.3.3. Кратность циркуляции катализатора
- •8.3.4. Давление
- •8.3.5. Сырье
- •8.4. Регенерация катализаторов
- •9. Изомеризация нормальных алканов
- •9.1. Термодинамика и механизм реакции
- •9.2. Катализаторы и режим процесса
- •9.2.1. Давление при изомеризации на бифункциональных катализаторах
- •9.2.2. Время реакции
- •9.3. Сырье
- •10. Каталитический риформинг
- •10.1. Термодинамика и механизм процесса
- •10.1.1. Циклоалканы
- •10.1.2. Алканы
- •10.1.3. Арены
- •10.2. Катализаторы
- •10.3. Основы управления процессом
- •10.3.2. Температура
- •10.3.3. Общее давление и парциальное давление водорода
- •10.3.4. Объемная скорость подачи сырья
- •11. Гидроочистка
- •11.1. Химизм, термодинамика и кинетика процесса
- •11.2. Катализаторы
- •11.3. Основы управления процессом
- •11.3.1. Температура
- •11.3.2. Общее давление и парциальное давление водорода
- •II.3.3. Сырье
- •12. Гидрокрекинг
- •12.1. Химизм и кинетика процесса
- •12.1.1. Алканы
- •12.1.2. Циклоалканы
- •12.1.3. Арены
- •12.1.4. Кинетика реакций гидрокрекинга
- •12.2. Основы управления процессом
- •12.2.1. Катализаторы
- •12.2.2. Давление
- •12.2.3. Температура
- •12.2.4. Объемная скорость подачи сырья и удельная циркуляция водородсодержащего газа
- •12.3. Селективный гидрокрекинг неразветвленных алканов
- •12.4. Каталитическое гидродеалкилирование аренов
12.2.2. Давление
С точки зрения экономики давление гидрокрекинга должно быть минимальным. Это минимальное значение давления определяется как термодинамическими, так и кинетическими условиями.
Скорость гидрокрекинга данного сырья на данном катализаторе определяется температурой процесса; эта температура должна обеспечивать приемлемую скорость реакций. При этой температуре давление должно обеспечивать термодинамическую возможность гидрирования (гидрокрекинга) наиболее полициклических аренов сырья. Из этого следует, что минимальное давление тем выше, чем менее активен катализатор (так как возрастает необходимая температура процесса) и чем тяжелее сырье (так как с ростом числа колец константа равновесия гидрирования уменьшается). При этом весьма важно, что большая термодинамически возможная глубина гидрирования первого кольца полициклического арена не обязательна, так как расщепление гидрированных колец снимает термодинамические ограничения гидрирования.
Диалкилнафталины могут гидрироваться в тетралины при 400—425 °С на 40—60 % при 7 МПа, и это давление, по-видимому, близко к минимально возможному при переработке легких газойлей. Для тяжелых газойлей и тем более остаточного сырья для предотвращения дегидрирования циклоалкановых колец в полициклических системах требуются более высокие давления. Возможная глубина гидрирования полициклических аренов с ростом давления возрастает непрерывно.
Скорость реакций гидрокрекинга на катализаторах гидрирующего типа с увеличением давления возрастает до очень высоких значений давления, практически не применяемых (табл. 12.6).
Скорость гидрокрекинга на катализаторах с высокой кислотной активностью, протекающего по карбкатионному механизму, зависит от давления более сложно. Повышение давления снижает термодинамически возможный выход алканов, которые инициируют образование карбкатионов, и ускоряет гибель последних при повышении концентрации водорода на поверхности катализатора при реакциях:
K-R+ + HD →RH + K + D
где К — кислотный активный центр; D — активный центр гидрирования — дегидрирования.
При невысоких давлениях концентрация водорода на Поверхности катализатора мала, и большое число кислотных активных центров «не работает» в результате дезактивации коксом.
Наложение
этих двух факторов приводит к наличию
максимума скорости реакции как
функции давления. Так, скорость
гидрокрекинга на катализаторе с
высокой кислотной активностью белого
вазелинового масла, перегоняющегося в
интервале 352—485°С, проходит через
максимум при 21 МПа (табл. 12.7).
Из данных табл. 12.7 видно, что выходы отдельных фракций гидрокрекинга проходят через максимумы при тем более высоких давлениях, чем тяжелее фракция. Это объясняется увеличением скорости стабилизации карбкатионов относительно скорости их распада с ростом давления. Увеличение скорости стабилизации карбкатионов относительно скорости их распада видно также из результатов гидрокрекинга декана (табл. 12.8). Увеличение вероятности стабилизации изомеров первично образующегося децильного карбкатиона с увеличением давления повышает выход изодеканов относительно выхода продуктов крекинга.
С увеличением давления в результате возрастания глубины гидрирования азотистых соединений до аммиака снижаются степень и скорость дезактивации катализаторов гидрокрекинга азотистыми основаниями (рис. 12.4 на стр. 265).
Для
переработки относительно тяжелых видов
сырья — вакуумных газойлей и газойлей
каталитического крекинга — применяют
давления 10—15 МПа. Для гидрокрекинга
нефтяных остатков с использованием
относительно дорогостоящих катализаторов
применяют давление 20 МПа.
ТАБЛИЦА 12.8. Результаты гидрокрекинга декана на катализаторе с высокой кислотной активностью
Гидрокрекинг прямогонных легких газойлей с низким содержанием азота можно проводить при относительно низких давлениях — порядка 7 МПа.
