- •Р.З. Магарил Теоретические основы химических процессов переработки нефти
- •Термические процессы переработки нефти……………. 36
- •2. Основы теории газофазных термических реакций углеводородов……….. 36
- •3. Термические превращения углеводородов в газовой фазе 54
- •12. Гидрокрекинг…………………………………………………………….244
- •1 Введение. Химический состав нефтей
- •1.1. Фракционный состав нефтей
- •1.2. Бензиновые фракции
- •1.2.3. Циклоалканы
- •Гетероатомные соединения
- •1.2.6. Влияние химического состава бензинов на их антидетонационные свойства
- •1.8. Фракции легкого газойля
- •Групповой и структурно-групповой состав
- •Циклоалканы
- •1.3.4. Арены
- •1.3.5. Гетероатомные соединения
- •1.3.6. Влияние химического состава на некоторые свойства газойлей
- •1.4. Масляные фракции
- •Циклоалканы
- •1.4.3. Арены
- •1.4.4. Гетероатомные соединения
- •1.5. Гудроны
- •Групповой состав
- •Циклоалканы
- •I. Термические процессы переработки нефти
- •2. Основы теории газофазных термических реакций углеводородов
- •2.1. Молекулярные реакции
- •2.2. Термический распад молекул на радикалы
- •2.3. Бимолекулярное образование радикалов
- •2.4. Реакции радикалов
- •2.4.1. Замещение (отрыв атома водорода)
- •2.4.2. Присоединение
- •2.4.3. Распад
- •2.4.4. Изомеризация
- •2.5. Соотношение скоростей реакций радикалов
- •2.6. Цепные реакции
- •2.6.1. Термины теории неразветвленных реакций
- •2.6.2. Кинетика неразветвленных реакций
- •2.6.3. Влияние продуктов реакции на ее кинетику
- •2.7. Радикальные нецепные реакции
- •3. Термические превращения углеводородов в газовой фазе
- •3.1. Алканы
- •3.2. Циклоалканы
- •8.3. Алкены
- •3.3.3. Алкены с четырьмя и более атомами углерода в молекуле
- •8.4. Диены, триены и алкины
- •3.6. Сложные углеводородные смеси
- •3.7. Образование пироуглерода
- •3.8. Основы управления процессом пиролиза
- •3.8.1. Температура
- •3.8.2. Давление
- •3.8.4. Сырье
- •8.8.5. Особенности пиролиза в присутствии водорода
- •4. Термические превращения углеводородов в жидкой фазе
- •Концентрация реагирующих веществ
- •Клеточный эффект
- •4.1.3. Влияние сольватации
- •4.2. Образование нефтяного кокса
- •4.3. Основы управления процессами термической переработки нефтяного сырья при наличии жидкой фазы
- •4.3.1. Замедленное коксование
- •4.3.2. Коксование в слое теплоносителя
- •4.3.3. Термический крекинг
- •4.3.4. Производство окисленных битумов
- •II. Каталитические процессы переработки нефти
- •5. Основы технического катализа
- •5.1.2. Классификация каталитических реакций и катализаторов
- •Гомогенный и гетерогенный катализ
- •Активность и селективность катализаторов
- •5.1.5. Стабильность катализаторов
- •5.2. Кинетика газофазных реакций
- •Реакции на пористом катализаторе
- •5.4. Реакции на твердом катализаторе при наличии жидкой фазы
- •5.5. Реакции, катализируемые жидким катализатором
- •5.6. Кислотный катализ
- •5.6.1. Кислоты и сила кислот
- •5.6.3. Функция кислотности и скорость реакции
- •5.6.4. Влияние среды на кинетику реакций с участием ионов
- •5.6.5. Свойства карбкатионов
- •6. Алкилирование изоалканов алкенами
- •6.1. Термодинамика и механизм процесса
- •6.2. Основы управления процессом
- •6.2.2. Сырье
- •6.2.3. Температура
- •6.2.4. Содержание изобутана
- •6.2.5. Контакт между фазами и время реакции
- •6.2.6. Давление
- •7. Полимеризация алкенов с целью получения компонента бензина
- •7.1. Термодинамика и механизм процесса
- •7.2.1. Катализатор
- •Температура
- •Давление
- •7.2.4. Сырье
- •8.1.1. Алканы
- •8.1.2. Циклоалканы
- •8.1.3. Алкены
- •8.1.4. Арены
- •8.2. Катализаторы
- •8.2.1. Природные активные алюмосиликатные катализаторы
- •8.2.2. Синтетические аморфные алюмосиликатные катализаторы
- •8.2.3. Синтетические кристаллические алюмосиликатные катализаторы
- •8.2.4. Свойства катализаторов
- •8.3. Основы управления процессом
- •8.3.1. Температура
- •8.3.2. Время реакции
- •8.3.3. Кратность циркуляции катализатора
- •8.3.4. Давление
- •8.3.5. Сырье
- •8.4. Регенерация катализаторов
- •9. Изомеризация нормальных алканов
- •9.1. Термодинамика и механизм реакции
- •9.2. Катализаторы и режим процесса
- •9.2.1. Давление при изомеризации на бифункциональных катализаторах
- •9.2.2. Время реакции
- •9.3. Сырье
- •10. Каталитический риформинг
- •10.1. Термодинамика и механизм процесса
- •10.1.1. Циклоалканы
- •10.1.2. Алканы
- •10.1.3. Арены
- •10.2. Катализаторы
- •10.3. Основы управления процессом
- •10.3.2. Температура
- •10.3.3. Общее давление и парциальное давление водорода
- •10.3.4. Объемная скорость подачи сырья
- •11. Гидроочистка
- •11.1. Химизм, термодинамика и кинетика процесса
- •11.2. Катализаторы
- •11.3. Основы управления процессом
- •11.3.1. Температура
- •11.3.2. Общее давление и парциальное давление водорода
- •II.3.3. Сырье
- •12. Гидрокрекинг
- •12.1. Химизм и кинетика процесса
- •12.1.1. Алканы
- •12.1.2. Циклоалканы
- •12.1.3. Арены
- •12.1.4. Кинетика реакций гидрокрекинга
- •12.2. Основы управления процессом
- •12.2.1. Катализаторы
- •12.2.2. Давление
- •12.2.3. Температура
- •12.2.4. Объемная скорость подачи сырья и удельная циркуляция водородсодержащего газа
- •12.3. Селективный гидрокрекинг неразветвленных алканов
- •12.4. Каталитическое гидродеалкилирование аренов
Реакции на пористом катализаторе
В табл. 5.3 приведены сводные данные о влиянии области протекания реакции на ее кинетические параметры. Рассмотрим, как изменяется область протекания реакции с изменением условий ее проведения.
Изменение температуры в наибольшей степени влияет на скорость реакции, проходящей в кинетической области, в значительно меньшей степени — при протекании реакции во внутридиффузионной области и практически не влияет на скорость реакции, если она протекает во внешнедиффузионной области. С повышением температуры реакция, протекающая во внутренней кинетической области, в результате возрастания константы скорости начинает тормозиться диффузией в порах и переходит во внутридиффузионную область. При дальнейшем повышении температуры продолжение возрастания константы скорости приводит к торможению реакции внешней диффузией, и реакция переходит во внешнедиффузионную область.
Далее повышение температуры на скорость реакции влияния практически не оказывает (рис.5.2). На непористом катализаторе осуществляются только два режима — внешнекинетический и внешнедиффузионный.
Если во внутренней кинетической области реакция протекает по первому порядку, то влияние давления на скорости внешней диффузии, внутренней диффузии и реакции в первом приближении (учитывающем только пропорциональность концентрации давлению) одинаково и изменение давления в некоторых пределах не влияет на область протекания реакции. Однако повышение давления снижает коэффициент молекулярной диффузии, что может привести к переходу реакции из кинетической во внутридиффузионную или из внутридиффузионной во внешнедиффузионную область.
Если реакция в кинетической области идет по порядку выше первого, то увеличение давления в наибольшей степени повышает скорость реакции в этой области (пропорционально рп, где п — порядок реакции), в меньшей — во внутридиффузионной и в наименьшей—скорость внешней диффузии. В результате повышение давления приводит к переходу реакции во внешнедиффузионную область.
Уменьшение размера частиц катализатора повышает скорость внешней диффузии и снижает внутридиффузионное торможение реакции; для данных скоростей реакции и условий ее проведения уменьшение размера частиц катализатора до некоторой величины в принципе всегда может обеспечить протекание реакции в кинетической области. Увеличение скорости потока в проточной системе (или перемешивание в статической) увеличивает скорость внешней диффузии, что способствует переходу реакции в область внутренней диффузии. Если наряду с основной проходят параллельные и последовательные ей реакции, то при переходе от одной области в другую могут сильно изменяться соотношения их скоростей, что может существенно влиять на селективность каталитического процесса.
5.4. Реакции на твердом катализаторе при наличии жидкой фазы
Если реагенты или один из реагентов находится в жидкой фазе, то условия транспорта реагентов к внешней и внутренней поверхностям катализатора резко изменяются относительно газофазных реагентов.
Для газов коэффициент диффузии имеет порядок 10-1·см2·с-1, для молекулярной диффузии в жидкости коэффициент диффузии ≈10-5 см2·с-1 — на четыре порядка меньше. Концентрация в жидкости на два порядка выше, чем в газе при атмосферном давлении, но скорость диффузии остается значительно (на два порядка) меньшей.
Если на твердом катализаторе проводится реакция между газообразным и жидким реагентами, то газ должен диффундировать к поверхности катализатора через пленку жидкости, которая представляет собой очень большое диффузионное сопротивление; в результате процесс практически всегда проходит во внешней диффузионной области. Скорость диффузии газа w на единицу внешней поверхности катализатора может быть для этого случая описана уравнением:
где D — коэффициент диффузии молекул газа в жидкости; δж — толщина пленки жидкости на поверхности катализатора; С — концентрация газа, растворенного в жидкости, на внешней границе пленки.
Коэффициент диффузии газа, растворенного в жидкости, имеет тот же порядок, что и для самой жидкости, т. е. ≈10-5 см2·с-1. Так как диффузия протекает медленно, концентрация газа С, растворенного в тонкой пленке жидкости, соприкасающейся с газом (являющейся внешней для пленки жидкости на поверхности катализатора и много меньшей последней по толщине), соответствует равновесной и определяется по уравнению Генри:
С = Нр
где Н — константа Генри; р — давление газа.
При данном давлении газа концентрация С тем больше, чем выше растворимость газа в данной жидкости, и скорость диффузии
возрастает с ростом давления, растворимости газа в жидкости (характеризуемой величиной Н) и уменьшением отношения объема жидкости Vж к внешней поверхности частиц катализатора Sвнеш, так как
Коэффициент диффузии пропорционален Т/μ (Т — абсолютная температура; р—динамическая вязкость жидкости). Вязкость жидкости с ростом температуры уменьшается, поэтому повышение температуры увеличивает коэффициент диффузии, однако константа Генри с повышением температуры уменьшается. Скорость диффузии может в результате повышения температуры и повыситься, и понизиться в зависимости от того, какая величина — μ или Н — меняется сильнее.
