- •Основы молекулярной физики и термодинамики
- •Федеральное агентство по образованию гоу впо «Сибирский государственный технологический университет»
- •Основы молекулярной физики и термодинамики
- •Введение
- •Часть I. Общие теоретические сведения курса «основы молекулярной физики и термодинамики»
- •Глава I.1. Молекулярно-кинетическая теория
- •§I.1.1 предмет молекулярной физики
- •§I.1.2 термодинамическая система. Термодинамические параметры. Уравнение состояния
- •§I.1.3 термодинамический процесс. Изопроцессы
- •§I.1.4 идеальный газ. Газовые законы. Уравнение состояния идеального газа
- •§I.1.5 закон авогадро. Закон дальтона
- •§I.1.6 основное уравнение кинетической теории газов. Закон равномерного распределения энергии по степеням свободы
- •§I.1.7 статистическое распределение
- •§I.1.8 средняя длина свободного пробега молекул
- •§I.1.9 явления переноса в газах
- •Глава I.2. Основы термодинамики
- •§I.2.1 полная и внутренняя энергия системы. Теплота и работа
- •§I.2.2 теплоёмкость вещества
- •§I.2.3 первый закон (начало) термодинамики. Применение первого закона термодинамики к изопроцессам
- •§I.2.4 второй закон (второе начало) термодинамики
- •Глава I.3. Реальные газы, жидкости и твёрдые тела
- •§I.3.1 уравнение ван-дер-ваальса
- •§I.3.2 экспериментальные изотермы
- •§I.3.3 внутренняя энергия реального газа. Эффект джоуля - томсона
- •Область выше этой кривой соответствует отрицательному эффекту Джоуля-Томсона, ниже – положительному. При больших перепадах давления на дросселе температура газа изменяется значительно.
- •§I.3.4 взаимные превращения жидкостей и газов
- •§I.3.5 строение жидкостей. Поверхностное натяжение
- •§I.3.6 смачивание. Капиллярные явления.
- •§I.3.7 строение и некоторые свойства твёрдых тел
- •§I.3.8 дефекты в кристаллах
- •§I.3.9 тепловые явления в средах при механическом воздействии
- •Часть II. Примеры решения задач
- •Глава II.1. Молекулярно-кинетическая теория
- •§II.1.1 идеальные газы. Газовые законы.
- •§II.1.2 основы молекулярно - кинетической теории газов
- •§II.1.3 статистическая физика
- •§II.1.4 физическая кинетика
- •Глава II. 2. Основы термодинамики
- •§II.2.1 первый закон термодинамики
- •§II.2.2 второй закон термодинамики
- •§II.2.3 реальные газы
- •Решение
- •Решение Из уравнения Ван-дер-Ваальса следует, что
- •Для идеального газа
- •§II.2.4 жидкости
- •Решение
- •Решение
- •Решение
- •Решение
- •§II.2.5 твёрдые тела
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Работа упругих сил, имеющих вид
- •Решение
- •Часть III. Вопросы и задачи для самопроверки
- •Глава III.1. Молекулярно-кинетическая теория
- •§ III.1.1 идеальные газы. Газовые законы.
- •§III.1.2 основы молекулярно - кинетической теории газов
- •Микроскопическая пылинка углерода обладает массой 0,1 нг. Определить, из скольких атомов она состоит.
- •§III.1.3 статистическая физика
- •§III.1.4 физическая кинетика
- •Явления переноса
- •Глава III. 2. Основы термодинамики
- •§III.2.1 первый закон термодинамики
- •§III.2.2 второй закон термодинамики
- •§III.2.3 реальные газы
- •§III.2.4 жидкости
- •§III.2.5 твёрдые тела
- •Сводные данные о характеристиках изопроцессов в газах.
- •Единицы измерения важнейших физических величин
- •Универсальные физические постоянные
- •Плотности
- •Эффективные диаметры молекул и атомов
- •Постоянные Ван –дер –Ваальса
- •Критические значения температуры и давления
- •Коэффициенты поверхностного натяжения жидкостей
- •Перечень ключевых слов
- •Библиографический список Основная литература
- •Дополнительная литература
- •Оглавление
- •Основы молекулярной физики и термодинамики
- •Федеральное агентство по образованию гоу впо «Сибирский государственный технологический университет»
- •Основы молекулярной физики и термодинамики
Область выше этой кривой соответствует отрицательному эффекту Джоуля-Томсона, ниже – положительному. При больших перепадах давления на дросселе температура газа изменяется значительно.
§I.3.4 взаимные превращения жидкостей и газов
ИСПАРЕНИЕ ЖИДКОСТЕЙ
Парообразованием называется процесс перехода из жидкого состояния в газообразное. Парообразование, происходящее при любой температуре со свободной поверхности жидкости, называется испарением. Совокупность молекул, вылетевших из жидкости при парообразовании, называется паром данной жидкости. Образование пара происходит не только у жидкостей, но и у твёрдых тел.
Из поверхностного слоя жидкости вылетают молекулы, которые обладают наибольшей скоростью и кинетической энергией теплового, хаотического движения, поэтому в результате испарения жидкость охлаждается.
Мерой процесса парообразования является скорость парообразования – количество жидкости, переходящей в пар за единицу времени с единицы площади поверхности жидкости.
НАСЫЩЕННЫЙ ПАР
Наряду с процессом парообразования, происходит компенсирующий его обратный процесс конденсации – превращения пара в жидкость. Скорость конденсации определяется числом молекул, переходящих из пара в жидкость через единицу площади поверхности жидкости в единицу времени.
Если скорость парообразования становится равной скорости конденсации, то наступает состояние динамического равновесия между процессами парообразования и конденсации.
Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром. Давление насыщенного пара зависит только от его химического состава и температуры (быстро возрастает с ростом температуры) и не зависит от величины свободного от жидкости объёма сосуда, в котором находится пар.
КИПЕНИЕ
Кипением называется процесс интенсивного парообразования не только со свободной поверхности, но и по всему объёму жидкости внутрь образующихся при этом пузырьков пара.
Температурой (точкой) кипения называется температура жидкости, при которой давление её насыщенного пара равно или превышает внешнее давление. Температура кипения повышается с ростом внешнего давления и понижается при его уменьшении. Различие точек кипения разных жидкостей связано с тем, что у разных жидкостей неодинаково давление насыщенного пара при одной и той же температуре. Чем выше давление насыщенного пара, тем выше точка кипения.
Количество теплоты, необходимое для превращения в пар единицы массы жидкости, нагретой до температуры кипения, называется удельной теплотой парообразования. Из закона сохранения энергии следует, что при обратном процессе – конденсации пара в жидкость – выделяется количество теплоты, равное удельной теплоте парообразования.
Если кипение данной жидкости происходит при более высокой (или низкой) температуре, то удельная теплота парообразования уменьшается (или увеличивается). Это связано с зависимостью давления насыщенного пара от температуры и условия кипения.
ВЛАЖНОСТЬ ВОЗДУХА
Абсолютной влажностью воздуха f называется масса водяных паров, содержащихся в 1 м3 воздуха при данных условиях.
Относительной
влажностью воздуха
называется отношение абсолютной
влажности к тому количеству водяного
пара, которое необходимо для насыщения
1 м3
воздуха при данной температуре.
Относительную влажность можно определить как отношение давления водяного пара (р), содержащегося в воздухе, к давлению насыщенного пара (рн) при данной температуре
. (I.77)
Обычно
и её выражают в процентах.
Точкой росы называется температура, при которой водяные пары, не насыщавшие ранее воздух, становятся насыщающими. Зная температуру воздуха и определив точку росы, рассчитывают влажность воздуха. При этом используется таблица давления насыщенного водяного пара при различных температурах.
