
- •Глава 1. Отбор и подготовка пробы к анализу
- •1.1. Отбор пробы
- •1.2. Отбор пробы газов
- •1.3. Отбор проб жидкостей
- •1.4. Отбор пробы твердых веществ
- •1.5. Способ отбора
- •1.6. Потери при пробоотборе и хранение пробы
- •1.7. Подготовка пробы к анализу
- •Глава 2. Статистическая обработка результатов
- •2.1. Погрешности химического анализа. Обработка результатов измерений
- •2.2. Систематическая ошибка
- •2.3. Оценка точности и правильности измерений при малом числе определений
- •2.4. Доверительный интервал и доверительная вероятность (надежность)
- •2.5. Аналитический сигнал. Измерение
- •Глава 3. Спектральные методы исследования веществ
- •3.1. Абсорбционная спектроскопия
- •3.1.1. Фотометрический анализ
- •3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- •3.1.1.2. Основные приемы фотометрического анализа
- •3.1.1.3. Анализ смеси окрашенных веществ
- •3.1.1.4. Аппаратура, используемая в анализе
- •3.1.1.5. Нефелометрия и турбидиметрия
- •3.1.2. Атомно-абсорбционная спектроскопия
- •3.1.2.1. Основы метода
- •3.1.2.2. Аппаратура, используемая в анализе
- •3.2. Эмиссионный спектральный анализ
- •3.2.1. Происхождение эмиссионных спектров
- •3.2.2. Источник возбуждения
- •3.2.3. Качественный анализ
- •3.2.4. Количественный анализ
- •3.2.5. Схема проведения аэса
- •3.2.6. Аппаратура, используемая в анализе
- •3.2.6.1. Принцип работы универсального стилоскопа
- •3.2.6.2. Принцип работы спектрографа
- •3.2.6.3. Принцип работы микрофотометра
- •3.3. Фотометрия пламени
- •3.3.1. Чувствительность анализа
- •3.3.2. Количественное определение элементов
- •3.3.3. Измерение интенсивности излучения
- •3.3.4. Методы определения концентрации растворов в фотометрии пламени
- •3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- •3.4.1. Основы методов
- •3.4.2. Спектры ик и комбинационного рассеяния (кр)
- •3.4.3. Аппаратура, используемая в анализе
- •3.5. Люминесцентный анализ
- •3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- •3.5.2. Основы метода
- •3.5.3. Аппаратура, используемая в анализе
- •3.6. Рентгеновская спектроскопия
- •3.6.1. Основные методы
- •3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- •3.6.1.2. Рентгеновский спектр
- •3.6.2. Рентгено-эмиссионный анализ
- •3.6.2.1. Качественный анализ
- •3.6.2.2. Количественный анализ
- •3.6.2.3. Аппаратура
- •3.6.3. Рентгенофлуоресцентный анализ
- •3.6.3.1. Основные виды рентгенофлуоресцентного анализа
- •3.6.3.2. Аппаратура метода
- •3.6.4. Рентгено-абсорбционный анализ
- •3.6.5.1. Основы метода
- •3.6.5.2. Аппаратура
- •3.7. Радиоспектроскопические методы
- •3.7.1. Основы метода
- •3.7.2. Электронный парамагнитный резонанс
- •3.7.3. Ядерно-магнитный резонанс
- •3.7.3.1. Основы метода
- •3.7.3.2. Аппаратура
- •3.7.4. Ядерный квадрупольный резонанс
- •3.7.5. Другие методы радиоспектроскопии
- •3.8. Ядерная спектроскопия
- •3.8.4. Нейтронная спектроскопия
- •3.9. Лазерная спектроскопия
- •3.10. Электронная спектроскопия
- •3.10.1. Фотоэлектронная спектроскопия
- •3.10.2. Спектроскопия характеристических потерь энергии электронов
- •3.11. Вакуумная спектроскопия
- •3.12. Ультрафиолетовая спектроскопия
- •Глава 4. Масс-спектрометрический метод анализа
- •4.1. Принцип действия масс-спектрометра
- •4.2. Виды масс-анализаторов
- •4.3. Элементный анализ
- •4.4. Интерпретация масс-спектров
- •Глава 5. Хроматографические методы
- •5.1. Классификация хроматографических методов
- •5.2. Хроматографические параметры
- •5.3. Теория хроматографического разделения
- •5.4. Теория теоретических тарелок
- •5.5. Кинетическая теория хроматографии
- •5.6. Аппаратура
- •5.7. Качественный анализ
- •5.8. Количественный анализ
- •5.9. Газовая хроматография
- •5.9.1. Газотвердофазная хроматография
- •5.9.2. Газожидкостная хроматография
- •5.10. Жидкостная хроматография
- •Глава 6. Электрохимические методы
- •6.1. Основные понятия электрохимии
- •6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- •6.1.2. Индикаторный электрод и электрод сравнения
- •6.1.3. Гальванический элемент
- •6.1.4. Электрохимические системы
- •6.1.4.1. Равновесные электрохимические системы
- •6.1.4.2. Неравновесные электрохимические системы
- •6.2. Потенциометрия
- •6.2.1. Прямая потенциометрия (ионометрия)
- •6.2.2. Потенциометрическое титрование
- •6.2.3. Аппаратура
- •6.3. Кулонометрия
- •6.3.1. Прямая кулонометрия
- •6.3.2. Кулонометрическое титрование
- •6.4. Вольтамперометрия
- •6.4.1. Амперометрическое титрование
- •6.4.2. Титрование с двумя индикаторными электродами
- •6.5. Кондуктометрический метод анализа
- •Глава 7. Методы термического анализа
- •7.1. Термогравиметрия и дтг
- •7.2. Метод дифференциального термического анализа
- •7.3. Дифференциальная сканирующая калориметрия
- •7.4. Дериватография
- •7.5. Дилатометрия и другие термические методы анализа
- •Глава 8. Дифракционные методы анализа
- •8.1. Основы теории дифракции
- •8.2. Методы дифракционного анализа
- •Глава 9. Микроскопические методы анализа
- •9.1. Световая микроскопия
- •9.2. Электронная микроскопия
- •9.2.1. Растровая электронная микроскопия
- •9.2.1.1. Аппаратура метода рэм
- •9.2.1.2. Использование вторичных и отраженных электронов в рэм
- •9.2.1.3. Типы контраста в растровой электронной микроскопии
- •9.2.1.4. Выбор условий работы рэм и подготовка образцов
- •9.2.1.5. Объекты исследования и их подготовка
- •9.2.2. Просвечивающая электронная микроскопия
- •9.2.2.1. Общая характеристика пэм
- •9.2.2.2. Аппаратура метода
- •9.2.2.3. Разновидности метода пэм
- •9.3. Сканирующие зондовые методы исследования
- •9.3.1. Сканирующая туннельная микроскопия
- •9.3.2. Атомно-силовая микроскопия
- •9.3.3. Магнитосиловая зондовая микроскопия
- •9.3.4. Сканирующая микроскопия ближней оптической зоны
- •Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- •Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- •Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194
9.3. Сканирующие зондовые методы исследования
Данная группа методов является наиболее широко используемой в области наноматериалов и нанотехнологий.
Основная идея всех методов данной группы заключается в исполь- зовании зонда – устройства считывания информации с поверхности ис- следуемого материала.
Все методы сканирующей зондовой микроскопии (СЗМ) основаны на одном принципе действия: острый зонд подводится к исследуемой поверхности на расстояние порядка 1 нм. В результате приближения между образцом и зондом устанавливается физическое взаимодействие, силу которого можно измерить. Интенсивность измеряемого сигнала за- висит от расстояния зонд–образец, что используется для контроля дан- ного расстояния. Относительное перемещение зонда и образца (скани- рование) реализуется с помощью пьезокерамического сканера, который изменяет размеры под воздействием прикладываемого напряжения.
Основное отличие между различными разновидностями методов СЗМ (сканирующая туннельная микроскопия – СТМ, сканирующая ближнепольная оптическая микроскопия, атомно-силовая микроскопия (АСМ), магнитно-силовая микроскопия, ближнепольная акустическая
291
микроскопия и т. д.) лежит в типе взаимодействия, который использует- ся для контроля расстояния зонд–образец.
Несмотря на то, что количество вариантов СЗМ достаточно много- численно, оно продолжает расти, что позволяет получать дополнитель- ную информацию не только топографическую, но и о поверхностных свойствах образцов.
В большинстве случаев в качестве рабочего тела зонда использует- ся алмазная игла с радиусом при вершине порядка 10 нм. С помощью высокоточного позиционирующего (сканирующего) механизма зонд пе- ремещают над поверхностью образца по трем координатам. Как прави- ло, имеется два диапазона перемещения зонда: грубое перемещение с относительно низкой точностью и высокой скоростью и точное пере- мещение с достаточно низкой скоростью и высокой точностью позици- онирования до 0,1–1 нм. Большая точность позиционирования обеспе- чивается, как правило, по высоте. Сигнал от зонда обрабатывается с по- мощью компьютера и преобразуется в трехмерное изображение. Для обработки снимаемых сигналов, их фильтрации и корректировки ис- пользуются специальные пакеты программ. Стоимость и размеры зон- довых микроскопов значительно ниже, чем у электронных, а возможно- сти вполне соизмеримы. Для ряда вариантов зондовой микроскопии наличие вакуума не требуется, материалы исследования могут быть са- мые разнообразные, в том числе изоляторы, полупроводники, биологи- ческие объекты. При этом исследования могут проводиться без суще- ственного повреждения объекта и с достаточно простой подготовкой его поверхности (например, только полировка отдельного участка).
Достоинства метода сканирующей микроскопии: сверхвысокое разрешение (атомного порядка, 10
-2 нм); возможность размещать обра-
зец не в вакууме (как в электронных микроскопах), а в обычной воз- душной среде при атмосферном давлении, в атмосфере инертного газа и даже в жидкости, что особенно важно для изучения гелеобразных и макромолекулярных структур (белков, ДНК, РНК, вирусов).
По принципу синтеза изображений (с помощью электронных ска- нирующих систем) и диапазону объектов анализа метод сканирующей микроскопии тесно связан с электронной микроскопией.