
- •Глава 1. Отбор и подготовка пробы к анализу
- •1.1. Отбор пробы
- •1.2. Отбор пробы газов
- •1.3. Отбор проб жидкостей
- •1.4. Отбор пробы твердых веществ
- •1.5. Способ отбора
- •1.6. Потери при пробоотборе и хранение пробы
- •1.7. Подготовка пробы к анализу
- •Глава 2. Статистическая обработка результатов
- •2.1. Погрешности химического анализа. Обработка результатов измерений
- •2.2. Систематическая ошибка
- •2.3. Оценка точности и правильности измерений при малом числе определений
- •2.4. Доверительный интервал и доверительная вероятность (надежность)
- •2.5. Аналитический сигнал. Измерение
- •Глава 3. Спектральные методы исследования веществ
- •3.1. Абсорбционная спектроскопия
- •3.1.1. Фотометрический анализ
- •3.1.1.1. Выбор длины света и светофильтра в фотометрическом анализе
- •3.1.1.2. Основные приемы фотометрического анализа
- •3.1.1.3. Анализ смеси окрашенных веществ
- •3.1.1.4. Аппаратура, используемая в анализе
- •3.1.1.5. Нефелометрия и турбидиметрия
- •3.1.2. Атомно-абсорбционная спектроскопия
- •3.1.2.1. Основы метода
- •3.1.2.2. Аппаратура, используемая в анализе
- •3.2. Эмиссионный спектральный анализ
- •3.2.1. Происхождение эмиссионных спектров
- •3.2.2. Источник возбуждения
- •3.2.3. Качественный анализ
- •3.2.4. Количественный анализ
- •3.2.5. Схема проведения аэса
- •3.2.6. Аппаратура, используемая в анализе
- •3.2.6.1. Принцип работы универсального стилоскопа
- •3.2.6.2. Принцип работы спектрографа
- •3.2.6.3. Принцип работы микрофотометра
- •3.3. Фотометрия пламени
- •3.3.1. Чувствительность анализа
- •3.3.2. Количественное определение элементов
- •3.3.3. Измерение интенсивности излучения
- •3.3.4. Методы определения концентрации растворов в фотометрии пламени
- •3.4. Методы колебательной спектроскопии. Ик-спектроскопия и спектроскопия комбинационного рассеяния
- •3.4.1. Основы методов
- •3.4.2. Спектры ик и комбинационного рассеяния (кр)
- •3.4.3. Аппаратура, используемая в анализе
- •3.5. Люминесцентный анализ
- •3.5.1. Классификация и величины, характеризующие люминесцентное излучение
- •3.5.2. Основы метода
- •3.5.3. Аппаратура, используемая в анализе
- •3.6. Рентгеновская спектроскопия
- •3.6.1. Основные методы
- •3.6.1.1. Взаимодействие рентгеновского излучения с веществом
- •3.6.1.2. Рентгеновский спектр
- •3.6.2. Рентгено-эмиссионный анализ
- •3.6.2.1. Качественный анализ
- •3.6.2.2. Количественный анализ
- •3.6.2.3. Аппаратура
- •3.6.3. Рентгенофлуоресцентный анализ
- •3.6.3.1. Основные виды рентгенофлуоресцентного анализа
- •3.6.3.2. Аппаратура метода
- •3.6.4. Рентгено-абсорбционный анализ
- •3.6.5.1. Основы метода
- •3.6.5.2. Аппаратура
- •3.7. Радиоспектроскопические методы
- •3.7.1. Основы метода
- •3.7.2. Электронный парамагнитный резонанс
- •3.7.3. Ядерно-магнитный резонанс
- •3.7.3.1. Основы метода
- •3.7.3.2. Аппаратура
- •3.7.4. Ядерный квадрупольный резонанс
- •3.7.5. Другие методы радиоспектроскопии
- •3.8. Ядерная спектроскопия
- •3.8.4. Нейтронная спектроскопия
- •3.9. Лазерная спектроскопия
- •3.10. Электронная спектроскопия
- •3.10.1. Фотоэлектронная спектроскопия
- •3.10.2. Спектроскопия характеристических потерь энергии электронов
- •3.11. Вакуумная спектроскопия
- •3.12. Ультрафиолетовая спектроскопия
- •Глава 4. Масс-спектрометрический метод анализа
- •4.1. Принцип действия масс-спектрометра
- •4.2. Виды масс-анализаторов
- •4.3. Элементный анализ
- •4.4. Интерпретация масс-спектров
- •Глава 5. Хроматографические методы
- •5.1. Классификация хроматографических методов
- •5.2. Хроматографические параметры
- •5.3. Теория хроматографического разделения
- •5.4. Теория теоретических тарелок
- •5.5. Кинетическая теория хроматографии
- •5.6. Аппаратура
- •5.7. Качественный анализ
- •5.8. Количественный анализ
- •5.9. Газовая хроматография
- •5.9.1. Газотвердофазная хроматография
- •5.9.2. Газожидкостная хроматография
- •5.10. Жидкостная хроматография
- •Глава 6. Электрохимические методы
- •6.1. Основные понятия электрохимии
- •6.1.1. Электрохимическая ячейка и ее электрический эквивалент
- •6.1.2. Индикаторный электрод и электрод сравнения
- •6.1.3. Гальванический элемент
- •6.1.4. Электрохимические системы
- •6.1.4.1. Равновесные электрохимические системы
- •6.1.4.2. Неравновесные электрохимические системы
- •6.2. Потенциометрия
- •6.2.1. Прямая потенциометрия (ионометрия)
- •6.2.2. Потенциометрическое титрование
- •6.2.3. Аппаратура
- •6.3. Кулонометрия
- •6.3.1. Прямая кулонометрия
- •6.3.2. Кулонометрическое титрование
- •6.4. Вольтамперометрия
- •6.4.1. Амперометрическое титрование
- •6.4.2. Титрование с двумя индикаторными электродами
- •6.5. Кондуктометрический метод анализа
- •Глава 7. Методы термического анализа
- •7.1. Термогравиметрия и дтг
- •7.2. Метод дифференциального термического анализа
- •7.3. Дифференциальная сканирующая калориметрия
- •7.4. Дериватография
- •7.5. Дилатометрия и другие термические методы анализа
- •Глава 8. Дифракционные методы анализа
- •8.1. Основы теории дифракции
- •8.2. Методы дифракционного анализа
- •Глава 9. Микроскопические методы анализа
- •9.1. Световая микроскопия
- •9.2. Электронная микроскопия
- •9.2.1. Растровая электронная микроскопия
- •9.2.1.1. Аппаратура метода рэм
- •9.2.1.2. Использование вторичных и отраженных электронов в рэм
- •9.2.1.3. Типы контраста в растровой электронной микроскопии
- •9.2.1.4. Выбор условий работы рэм и подготовка образцов
- •9.2.1.5. Объекты исследования и их подготовка
- •9.2.2. Просвечивающая электронная микроскопия
- •9.2.2.1. Общая характеристика пэм
- •9.2.2.2. Аппаратура метода
- •9.2.2.3. Разновидности метода пэм
- •9.3. Сканирующие зондовые методы исследования
- •9.3.1. Сканирующая туннельная микроскопия
- •9.3.2. Атомно-силовая микроскопия
- •9.3.3. Магнитосиловая зондовая микроскопия
- •9.3.4. Сканирующая микроскопия ближней оптической зоны
- •Глава 3. Спектральные методы исследования веществ .................................................................................................... 25
- •Глава 4. Масс-спектрометрический метод анализа ....................................................................................................................... 152
- •Глава 6. Электрохимические методы .............................. 193 6.1. Основные понятия электрохимии .............................................. 194
5.1. Классификация хроматографических методов
Хроматографические методы делят: 1. По агрегатному состоянию фаз на газовую и жидкую хромато-
графию. Газовая – включает газожидкостную и газотвердофазную. Жидкостная – жидкостно-жидкостную, жидкостно-твердофазную и
жидкостно-гелиевую. Первое слово характеризует агрегатное состояние подвижной фазы.
2. По механизму взаимодействия сорбента и сорбата выделяют несколько видов хроматографии:
a) распределительная хроматография основана на различии в рас- творимости разделяемых веществ в неподвижной фазе (газожидкостная хроматография) или на различии растворимости веществ в подвижной и неподвижной жидкой фазе;
b) ионообменная хроматография – на разной способности ве- ществ к ионному обмену;
c) адсорбционная хроматография – на различии адсорбируемости веществ твердым сорбентом;
d) эксклюзионная хроматография – на различии в размерах и формах молекул веществ;
e) аффинная хроматография – на специфических взаимодействи- ях, характерных для некоторых биохимических процессов;
f) проникающая хроматография – на различии в размерах или формах молекул разделяемых веществ, например, при применении мо- лекулярных сит (цеолитов);
g) осадочная хроматография – на образовании различных по рас- творимости осадков разделяемых веществ с сорбентом;
h) адсорбционно-комплексообразовательная хроматография – на образовании координационных соединений различной прочности в фазе или на поверхности адсорбента.
3. По технике выполнения выделяют колоночную хроматогра- фию и плоскостную хроматографию.
В колоночной хроматографии сорбентом заполняют специальные трубки – колонки, а подвижная фаза движется внутри колонки благода- ря перепаду давления. Разновидность колоночной хроматографии – ка- пиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки.
Плоскостная хроматография подразделяется на тонкослойную и бумажную. Плоскостная хроматография подразделяется на бумажную (разделение веществ проводится на специальной бумаге) и тонкослой- ную (разделение веществ проводится в тонком слое сорбента). В тонко-
170
слойной хроматографии тонкий слой гранулированного сорбента или пористая плѐнка наносится на стеклянную или металлическую пластин- ки. Тонкослойная и бумажная хроматография используются для анализа жиров, углеводов, белков и др. природных веществ и неорганических соединений.
В колоночной и тонкослойной хроматографии можно использовать любой из приведенных выше механизмов разделения, в бумажной хро- матографии чаще всего применяют распределительный и ионообмен- ный механизмы.
4. По цели хроматографирования: a) аналитическая (качественный и количественный анализ); b) препаративная (для получения веществ); c) промышленная (для автоуправления процессом). 5. По способу относительного перемещения фаз различают фрон-
тальную, элюентную и вытеснительную хроматографию. Фронтальный метод состоит в том, что через колонку с адсорбен-
том непрерывно пропускают анализируемую смесь, например, компо- нентов А и В в растворителе. В растворе, вытекающем из колонки, определяют концентрацию каждого компонента и строят график в ко- ординатах концентрация вещества – объем раствора, прошедшего через колонку. Эту зависимость обычно и называют хроматограммой или вы- ходной кривой. Вследствие сорбции веществ А и В сначала из колонки будет вытекать растворитель, а затем растворитель и менее сорбирую- щийся компонент А, затем и компонент В, и, таким образом, через неко- торое время состав раствора при прохождении через колонку меняться не будет. Метод применяется, например, для очистки раствора от при- месей, если они сорбируются существенно лучше, чем основной компо- нент, или для выделения из смеси наиболее слабо сорбирующегося ве- щества.
Проявительный (элюентный) метод. При работе по этому методу в колонку водят порцию анализируемой смеси, содержащей компоненты А и В в растворителе, и колонку непрерывно промывают газом- носителем или растворителем. При этом компоненты анализируемой смеси разделяются на зоны: хорошо сорбирующееся вещество В зани- мает верхнюю часть колонки, а менее сорбирующийся компонент А бу- дет занимать нижнюю часть. В газе или растворе, вытекающем из ко- лонки, сначала появляется компонент А, далее – чистый растворитель, а затем компонент В. Чем больше концентрация компонента, тем выше пик и больше его площадь, что составляет основу количественного хро- матографического анализа. Проявительный метод дает возможность разделять сложные смеси, он наиболее часто применяется в практике.
171
Недостатком метода является уменьшение концентрации выходящих растворов за счет разбавления растворителем или газом-носителем.
Вытеснительный метод. В этом методе анализируемую смесь ком- понентов А и В в растворителе вводят в колонку и промывают раство- ром вещества D (вытеснитель), которое сорбируется лучше, чем любой из компонентов анализируемой смеси. Концентрация раствора при хро- матографировании не уменьшается. Существенным недостатком метода является возможное наложение зоны одного вещества на зону другого, поскольку зоны компонентов в этом методе не разделены зоной раство- рителя.
В хроматографии чаще всего используют методику элюентного анализа, в этом случае наблюдаемый пик в координатах концентрация- объем называют хроматографическим пиком и характеризуют высотой, шириной и площадью.