Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Карточки по математике для подготовки к ОГЭ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
348.64 Кб
Скачать

5. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

1) Бис­сек­три­са рав­но­бед­рен­но­го тре­уголь­ни­ка, про­ведённая из вер­ши­ны, про­ти­во­ле­жа­щей ос­но­ва­нию, делит ос­но­ва­ние на две рав­ные части.

2) В любом пря­мо­уголь­ни­ке диа­го­на­ли вза­им­но пер­пен­ди­ку­ляр­ны.

3) Для точки, ле­жа­щей на окруж­но­сти, рас­сто­я­ние до цен­тра окруж­но­сти равно ра­ди­у­су.

 

Карточка №11

1..  В тре­уголь­ни­ке ABC угол C равен 90°, AC = 4, tgA = 0,75. Най­ди­те BC.

2.  Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4. Угол при вер­ши­не, про­ти­во­ле­жа­щий ос­но­ва­нию, равен 120°. Най­ди­те диа­метр окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

3.  В ромбе сто­ро­на равна 10, одна из диа­го­на­лей —  , а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 45°. Най­ди­те пло­щадь ромба, де­лен­ную на 

4.   Най­ди­те тан­генс угла AOB.

5. Какое из сле­ду­ю­щих утвер­жде­ний верно?

1) Сумма ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка равна 90 гра­ду­сам.

2) Сред­няя линия тра­пе­ции равна сумме её ос­но­ва­ний.

3) В любой четырёхуголь­ник можно впи­сать окруж­ность.

Карточка №12

1. Сумма трех углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 300°. Най­ди­те чет­вер­тый угол. Ответ дайте в гра­ду­сах.

2.

  От­рез­ки AC и BD — диа­мет­ры окруж­но­сти с цен­тром O. Угол ACB равен 23°. Най­ди­те угол AOD. Ответ дайте в гра­ду­сах.

3. Пе­ри­метр ромба равен 40, а один из углов равен 30°. Най­ди­те пло­щадь ромба.

4.  Най­ди­те тан­генс угла AOB, в тре­уголь­ни­ке, изоб­ражённом на ри­сун­ке.

5. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Пра­виль­ный ше­сти­уголь­ник имеет шесть осей сим­мет­рии.

2) Пря­мая не имеет осей сим­мет­рии.

3) Цен­тром сим­мет­рии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.

4) Рав­но­бед­рен­ный тре­уголь­ник имеет три оси сим­мет­рии.

Карточка №13

1.   Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна   Один из ост­рых углов равен 30°. Най­ди­те длину ка­те­та, ле­жа­ще­го на­про­тив этого угла.

2. От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те длину хорды CD, если AB = 20, а рас­сто­я­ния от цен­тра окруж­но­сти до хорд AB и CD равны со­от­вет­ствен­но 24 и 10.

3. В ромбе сто­ро­на равна 10, одна из диа­го­на­лей —  , а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 150°. Най­ди­те пло­щадь ромба.

4. Най­ди­те пло­щадь тра­пе­ции, изоб­ражённой на ри­сун­ке.

5. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Цен­тром сим­мет­рии пря­мо­уголь­ни­ка яв­ля­ет­ся точка пе­ре­се­че­ния диа­го­на­лей.

2) Цен­тром сим­мет­рии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.

3) Пра­виль­ный пя­ти­уголь­ник имеет пять осей сим­мет­рии.

4) Цен­тром сим­мет­рии рав­но­бед­рен­ной тра­пе­ции яв­ля­ет­ся точка пе­ре­се­че­ния ее диа­го­на­лей.

 

Карточка №14

  1. Най­ди­те ве­ли­чи­ну угла DOK, если OK — бис­сек­три­са угла AOD, ∠DOB = 108°. Ответ дайте в гра­ду­сах.

2.  От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окруж­но­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от цен­тра окруж­но­сти до хордыAB равно 12.

3.   Бо­ко­вая сто­ро­на рав­но­бед­рен­но­го тре­уголь­ни­ка равна 34, а ос­но­ва­ние равно 60. Най­ди­те пло­щадь этого тре­уголь­ни­ка.

4.   Най­ди­те тан­генс угла AOB, изоб­ражённого на ри­сун­ке.

5.  Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

 

1) Каж­дая из бис­сек­трис рав­но­бед­рен­но­го тре­уголь­ни­ка яв­ля­ет­ся его ме­ди­а­ной.

2) Диа­го­на­ли пря­мо­уголь­ни­ка равны.

3) У любой тра­пе­ции бо­ко­вые сто­ро­ны равны.

 

Карточка №15

1.   Ос­но­ва­ния тра­пе­ции равны 8 и 20. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.

2.   Цен­траль­ный угол AOB опи­ра­ет­ся на хорду АВ так, что угол ОАВ равен 60° . Най­ди­те длину хорды АВ, если ра­ди­ус окруж­но­сти равен 8.

3.   Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 15 и 25, а её бо­ко­вые сто­ро­ны равны 13. Най­ди­те пло­щадь тра­пе­ции.

4.   Най­ди­те тан­генс угла AOB, изоб­ражённого на ри­сун­ке.