Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции эконометрика.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
899.07 Кб
Скачать

Интерпретация коэффициентов:

Средняя стоимость телефона слим: , раскладушка: , вертушка:

Замечание: если рассматривается ситуация, когда бинарная переменная описывает не все возможные варианты, то в модель включаются все переменные.

Пример: если рассматривается вторичный рынок квартир в Москве, то зависимая переменная – это стоимость 1 кв.м. В качестве одного из факторов используют количество комнат и включают в модель 4 новые переменные следующего вида:

, если одна комната; , если нет

, если две комнаты; , если нет

, если три комнаты; , если нет

, если четыре комнаты; , если нет

В модель включаются все 4 переменные, т.к. в базе данных по квартирам присутствуют и многокомнатные квартиры, т.е. больше четырех комнат.

Прогнозирование

После построения регрессионного уравнения и оценки значимости ее коэффициентов, можно получить предсказанное значение результата с помощью точного прогноза при заданном значении фактора . Для этого в полученное уравнение регрессии надо подставить факторы , после чего получить прогноз. Это так называемый точечный прогноз, но он не дает требуемых представлений, и мало применим на практике. Поэтому дополнительно необходимо осуществить определение стандартной ошибки прогнозирования и получить интервальную оценку прогнозного значения.

Чтобы построить интервальный прогноз, необходимо найти верхнюю и нижнюю границы. Найдем сначала формулу стандартной ошибки прогнозирования . Вставим в формулу линейной регрессии значение параметра . Тогда уравнение регрессии имеет следующий вид:

Из этой формулы следует, что стандартная ошибка прогнозирования зависит от ошибки y-среднее и ошибки коэффициента регрессии b. Тогда

, если - неизвестна, то ее заменяют на оценку дисперсии

Учитывая ошибку регрессии ,получаем следующую формулу для прогноза:

Тогда интервальный прогноз или доверительный интервал прогнозируемого значения рассчитывается следующим образом:

, где -предельная ошибка прогноза

- кванти с уровнем доверия

Например: =0,95, то истинное значение попадет в доверительный интервал с вероятностью 0,95

Строя прогноз, мы хотим получить как можно более точный прогноз и как можно меньший интервал (узкий), но чем выше , тем дальше друг от друга границы интервала и наоборот. Поэтому приходится искать компромисс. Часто в задачах задано заказчиками исследования. Поэтому, строя модель, мы должны помнить, что хорошая модель – это та, интервальные прогнозы, по которой достаточно точные и границы не слишком далеко друг от друга, а сам интервал неширокий.

Замечание: если построенная по выборке модель имеет высокий , все оценки значимы, остатки близки к нормальным, но прогнозы неточные, широкие интервалы прогнозирования (плохая прогностическая способность модели), то, возможно, вы просто подогнали модель под данные и она не подходит, т.е. ее надо переделать, т.е. прогнозирование можно использовать в качестве оценки качества модели.

Выбор параметров линейной регрессии (процедура пошагового отбора)

При построении регрессии для подбора наиболее подходящих параметров используется либо метод включений, либо метод исключений.

Смысл метода включений:

1) По матрице корреляций выбирается параметр, коэффициент корреляции которого с зависимой переменной (Y) – наибольший

2) Строится парная регрессия Y на этот параметр .

3) Если коэффициент линейной регрессии значим, т.е. р<0,05, то параметр остается а

4) Берется следующий параметр.

5) Строится регрессия Y на

Оценивается значимость коэффициентов.

Если коэффициент при соответствующем параметре незначим, параметр исключают .

Если не значим – смотри пункт 4)

7) После рассмотрения последнего параметра должна получиться многомерная регрессия, у которой вес параметры значимы.

8) Рассматриваем более детально не вошедшие в модель параметры и пытаемся определить, с чем связано их не влияние: либо неудачная выборка, либо неправильно определен параметр, либо не включенные параметры влияют только во взаимодействии с другими параметрами.

Смысл метода исключений:

  1. Строим регрессию Y на все параметры X

  2. Исключаем самый незначимый параметр.

  3. Строим новую регрессию Y

По окончании процедуры должна получиться регрессия , где все параметры значимы.

Рассмотрим более детально не вошедшие в модель параметры.

Выбросы – в экономике ими называются резко отличающиеся от других значения.

цена

№1 №2

№3

время работы

Если рассматривать мобильные телефоны, зависимость цены от времени работы, то №1, №2, №3 – считаются выбросами, т.к. №1 и №2 имеют слишком большую цену, а у №3 при самом большом времени работы самая маленькая цена.

5%-10% от выборки.

Встает проблема определения выбросов.

Существует множество процедур определения выбросов. Рассмотрим один из них.

Рассмотрим зависимость Y от параметров

Y -----------------

-------------------

Для определения того, является ли значение выбросом или нет, используют следующее: строят интервал следующего вида: математическое ожидание параметра минус два стандартных отклонения : -левая граница

-правая граница

Те значения параметра, которые не попадут в этот интервал, считаются выбросами.

Если при построении регрессии параметров несколько, то сначала по каждому из параметров определяются номера выбросов, а затем либо все они считаются выбросами, либо только наиболее часто встречаемые номера.

Обязательное условие этой процедуры – это пояснение, почему то или иное наблюдение является выбросом.