- •Терминология в фх.
- •Правила выбора названия лс. Междунар непатентованные наименования (мнн) фарм субстанций. Торговые названия лс. Патентованные названия лс.
- •21. Фармацевтический анализ как составная часть фармацевтической химии и раздел прикладной аналитической химии. Особенности фармацевтического анализа.
- •22. Виды фармацевтического анализа: фармакопейный анализ, постадийный контроль качества в процессе пром. Произврдства, контроль качества лс аптечного изготовления, биофармацевтич. Анализ.
- •23. Основные принципы фармакопейного анализа. Унификация и стандартизация однотипных испытаний в группах лс.
- •29 Сравнительная оценка хроматографических, спектрометрических, белоксвязывающих и других методов, применяемых для определения лекарственных веществ в биологических жид-костях.
- •30. Методы разделения и концентрирования, используемые в биофармацевтическом анализе.
- •31. Исследования фармакокинетики лекарственных средств. Основные фармакокинетиче-ские параметры: биодоступность, объём распределения, клиренс, константа скорости элимина-ции, период полуэлиминации.
- •32. Метаболизм лекарственных веществ. Основные фазы метаболизма: несинтетическая (реакции окисления, восстановления и гидролиза) и синтетическая (реакции конъюгации).
- •33. Биоэквивалентные исследования генерических лекарственных средств. Понятия терапевтической, фармацевтической и биологической эквивалентности. Основные этапы биоэквивалентных исследований.
- •37.Гравиметрия. Применение в фармацевтическом анализе.
- •38. Окислительно-восстановительное титрование: иодометрия, хлориодометрия, иодатометрия, нитритометрия, перманганатометрия, дихроматометрия, цериметрия. Применение в фармацевтическом анализе.
- •43. Спектрометрия ямр. Применение в фармацевтическом анализе.
- •46. Рефрактометрия. Применение в фармацевтическом анализе.
- •47. Хироптические методы анализа: поляриметрия, спектрометрия кругового дихроизма. Применение в фармацевтическом анализе.
- •48. Кондуктометрия. Применение в фармацевтическом анализе.
- •49. Вольтамперометрическое и амперометрическое титрование. Применение в фармацевтическом анализе.
- •50. Газова хроматография. Применение в фармацевтическом анализе.
- •52.Высокоэффективная жидкостная хроматография. Применение в фармацевтическом анализе.
- •53.Эксклюзионная хроматография, ионообменная хроматография, сверхкритическая флюидная хроматография. Применение в фармацевтическом анализе.
- •54.Электрофорез. Капилярный электрорфорез. Применение в фармацевтическом анализе.
- •56.Термические методы анализа: термогравиметрия, дифференциальный термический анализ, дифференциальная сканирующая калориметрия. Применение в фармацевтическом анализе.
- •57. Белоксвязывающие методы анализа: иммунохимические и рецепторные. Применение в фармацевтическом анализе.
- •57. Биологические методы анализа. Применение в фарм. Анализе.
- •34. Особенности аналитического этапа биоэквивалентных исследований генерических лекарственных средств.
- •58. Приготовление фармакопейном растворов реактивов, эталонных и буферных растворов, используемых в анализе.
- •60. Методы идентификации (установления подлинности), используемые в фармакопейном анализе. Первая и вторая идентификации.
- •62. Реакции идентификации неорганических анионов: бромиды, иодиды, карбонаты и гидрокарбонаты, мышьяк (арсениты и арсенаты), нитраты.
- •63. Реакции идентификации функциональных групп: ацетил, амины ароматические первичные, эфиры сложные.
- •59.Физические свойства фармацевтических субстанций: агрегатное состояние, внешний вид, окраска, кристалличность, полиморфизм.
- •65,Определение вязкости методами капиллярной и ротационной вискозиметрии.
- •69Общие и частные методы определения примесей. Общая фс гф рб «испытания на предельное содержание примесей»: аммония соли, кальций, хлориды, фториды, магний, магний и щелочно-земельные металлы.
- •91. Общая фармакопейная статья гф рб «Испытания на предельное содержание примесей»: тяжелые металлы, железо, фосфаты, калий, сульфаты, алюминий.
- •70,Определение окраски жидкостей, прозрачности и степени мутности жидкостей.
- •71 Определение летучих веществ и воды как критерии оценки качества лекарственных средств. Определение воды методом отгонки, микрометодом и полумикрометодом.
- •25 Отбор проб и пробоподготовка
- •27.Особенности контроля кач –ва различных лф
- •73.Вода высокоочищенная
- •76 Магния оксид - magnesii oxidum
- •75. Кальция хлорид гексагидрат - Calcii chloridum hexahydricum CaCl2 • 6h2o
- •75 Сульфат бария BaSo4
- •77 Водорода пероксида 3 % раствор hydrogen peroxide solution
- •78. Калия йодид - Kalii iodidum натрий йодид
- •79. NaCl kCl калия хлорид - Kalii chloridum
- •80. Калия бромид - Kalii bromidum - potassium bromide - kBr м.М. 119,0 и натрия бромид - NaBr
- •81. Натрия гидрокарбонат - Natrii hydrogenocarbonas - NaHco3
- •4[BiNo3(oh)2],BiO(oh) m.М.1462
- •82. Борная кислота - Acidum boricum - boric acid
- •83. Цинка оксид - Zinci oxidum - zinc oxide - ZnO м.М.81,4
- •85. Вазилин
- •86 Эфир анестезирующий- chCl3 - хлороформ
- •87. Хлоралгидрат
- •88. Лактоза
- •42. Способы получения, свойства, контроль качества и условия хранения ментола (левоментол, ментол рацемический).
- •143. Способы получения, свойства, контроль качества и условия хранения камфоры (d-камфора, камфора рацемическая).
- •144. Способы получения, свойства, контроль качества и условия хранения фенола.
- •145. Способы получения, свойства, контроль качества и условия хранения резорцина.
- •47. Способы получения, свойства, контроль качества и условия хранения бензойной кислоты и натрия бензоата.
- •149. Способы получения, свойства, контроль качества и условия хранения бензокаина.
- •50. Способы получения, свойства, контроль качества и условия хранения прокаина гидрохлорида.
- •151. Способы получения, свойства, контроль качества и условия хранения хлорамфеникола.
- •2. Способы получения, свойства, контроль качества и условия хранения сульфаниламида.
- •3. Способы получения, свойства, контроль качества и условия хранения сульфацетамида натрия.
- •155. Рутозид тригидрат (рутин)
- •56. Метамизол натрия (анальгин)
- •157. Дибазол (# бендазола гидрохлорид)
- •200.Никетамид
48. Кондуктометрия. Применение в фармацевтическом анализе.
Кондуктометрия - это совокупность электрохимических методов анализа, основанных на измерении удельной электропроводности (или сопротивления) растворов электролитов.
Любое вещество характеризуется своим электрическим сопротивлением (R). Величина обратная сопротивлению называется электропроводностью или электрической проводимостью (G). Для раствора электролита, находящегося между двумя электродами, площадь поверхности которых равна S и расстояние между которыми равно l:
г
де
- удельная электропроводность раствора
Удельная
электропроводность связана с молярной
концентрацией эквивалента вещества
(моль/л):
где
- молярная (эквивалентная) электропроводность
(См*см2/моль)
При малых и средних концентрациях (до 2-4 моль/л) удельная электропроводность раствора прямо пропорциональна молярной концентрации электролита в растворе. При больших концентрациях эта зависимость отклоняется от прямолинейной, а при концентрациях больше 8-10 моль/л удельная электропроводность раствора начинает даже уменьшаться. При бесконечном разбавлении раствора величина удельной электропроводности стремится к нулю.
Молярная
электропроводность равна произведению
абсолютной скорости движения иона на
постоянную Фарадея. При уменьшении
концентрации электролита и уменьшении
ионной силы скорости движения ионов
возрастают, поэтому величина
увеличивается. При бесконечном
разбавлении молярная электропроводность
достигает некоторого предельного
(ненулевого) значения, называемого
предельной молярной электропроводностью
.
Согласно закону Кольрауша:
Самую высокую
.
среди катионов имеет катион гидроксония,
а среди анионов - гидроксид-ион. Это
связано с их способностью передавать
свой заряд через молекулы растворителя
по особому «эстафетному» механизму, на
что затрачивается значительно меньше
времени, чем для непосредственного
перемещения к электроду.
П
рямая
кондуктометрия основана на существовании
(в области разбавленных и умеренно
концентрированных растворов) прямолинейной
зависимости между к и С. Поскольку
электропроводность раствора является
аддитивной величиной, прямая кондуктометрия
обладает малой избирательностью и
используется лишь в тех случаях, когда
достаточно знать общую концентрацию
ионов в растворе, например, при контроле
качества воды, определении суммарного
содержания солей в природных водах
или биологических жидкостях.
Кондуктометрический детектор является одним из детекторов, используемых в ВЭЖХ. Прямую кондуктометрию используют также для определения различных физико-химических характеристик вещества (Ka, KS и др.).
Кондуктометрическое титрование основано на изменении удельной электропроводности раствора в зависимости от количества добавленного титранта. Чаще всего в кондуктометрическом титровании используются протолитические реакции, реже всего - окислительно-восстановительные. Электропроводность исходного раствора должна заметно отличаться от электропроводности реагента или продукта реакции. Константу ячейки при кондуктометрическом титровании знать не обязательно, поскольку определяют не абсолютное значение , а её изменение в процессе титрования. Главное, чтобы в процессе титрования константа ячейки оставалась постоянной. Кондуктометрическое титрование может быть использовано в тех случаях, когда трудно провести визуальное обнаружение конечной точки титрования - при анализе мутных и окрашенных растворов, а также в случае определения веществ в сильно разбавленных растворах (10-4 М и меньше).
. Потенциометрия. Применение в фармацевтическом анализе.
Потенциометрическими
называют методы анализа, основанные на
измерении зависимости равновесного
электродного потенциала от активности
определяемого иона.
При потенциометрических измерениях используется электрохимическая ячейка, работающая в режиме гальванического элемента. В состав ячейки входит индикаторный электрод, потенциал которого зависит от активности определяемого иона или от активности хотя бы одного из компонентов протекающей химической реакции, и электрод сравнения (чаще всего хлорсеребряный), величина потенциала которого постоянна. Величина потенциала индикаторного электрода связана с активностью определяемого иона уравнением Нернста
Измерение
ЭДС гальванического элемента проводят
в условиях, которые близки к
термодинамическим: сила тока, протекающего
через ячейку, должна быть равна 0; время,
в течение которого проводится измерение,
должно быть достаточным для достижения
равновесия.
П
ри
измерении ЭДС в таких условиях можно
считать, что величина соотношения
aOx/ared
у поверхности электрода равна величине
этого соотношения в растворе
В прямой потенциометрии концентрацию (активность) опреде-ляемого вещества рассчитывают, исходя из величины ЭДС гальванического элемента. Чаще всего индикаторным в прямой потенциометрии является ионоселективный электрод. Прямые потенциометрические измерения, в которых используется ионоселективный электрод, называются ионометрией. Данный метод анализа характеризуется простотой и экспрессностью методик, недорогой аппаратурой. Потенциометрическим титрованием называется метод анализа, основанный на регистрации изменения потенциала индикаторного электрода в процессе химической реакции между определяемым веществом и титрантом. При потенциометрическом титровании конечную точку титрования находят, измеряя электродвижущую силу (э.д.с.) электродной пары, состоящей из индикаторного электрода и электрода сравнения или двух индикаторных электродов, погруженных в испытуемый раствор, как функцию количества прибавленного титранта. В основе потенциометрического титрования могут лежать различные протолитические, окислительно-восстановительные, осадительные реакции и реакции комплексообразования, протекающие количественно, стехиометрично и с приемлемой скоростью. Выбор индикаторного электрода для выполнения потенциометрического титрования зависит от используемой реакции. Например, при кислотно-основном титровании обычно используют стеклянный рН-чувствительный электрод, при окислительно-восстановительном может быть использован инертный платиновый электрод, при комплексонометрическом – электрод, чувствительный по отношению к ионам определяемого металла и т.д. Конечную точку титрования обнаруживают с использованием кривой титрования, её производных, а также методом Грана.
