- •Принципы и методы выделения и идентификации чистой культуры бактерий. Этапы исследования.
- •Основные принципы культивирования бактерий:
- •1.Патогенность - т.Е. Способность микроорганизма вызывать заболевание-более широкое понятие, чем паразитизм.
- •Факторы патогенности:
- •Эпидемиологические особенности.
- •Основные методы выявления микроорганизмов
- •Аг строение бактерий.
- •Основные симптомы заболевания
- •Лечение дисбактериоза
- •Морфология и ультраструктура спирохет. Классификация. Их роль в патологии человека.
Билет 26
Принципы и методы лабораторной диагностики бактериальных и вирусных инфекций.
Лабораторная диагностика инфекционных заболеваний проводится в трех основных направлениях:
1) поиски возбудителя заболевания в материале, взятом у больного (испражнения, моча, мокрота, кровь, гнойное отделяемое и др.);
2) обнаружение специфических антител в сыворотке крови — серологическая диагностика;
3) выявление повышенной чувствительности организма человека к возбудителям инфекционных заболеваний — аллергический метод.
Для выявления возбудителя инфекционного заболевания и его идентификации (определения вида возбудителя) используют три метода: микроскопический, микробиологический (бактериологический) и биологический.
Микроскопический метод позволяет обнаружить возбудителя непосредственно в материале, взятом у больного. Этот метод имеет решающее значение при диагностике гонореи, туберкулеза, заболеваний, вызываемых простейшими: малярии, лейшманиозов, балантидиаза, амебиаза. Возможности микроскопического метода при этих инфекциях обусловлены значительными морфологическими различиями возбудителей данных заболеваний. Особенности морфологии возбудителей играют основную роль в постановке диагноза. Однако микроскопический метод не позволяет поставить диагноз при таких инфекциях, как, например, брюшной тиф и паратифы, дизентерия, потому что различить их возбудителей по морфологическим признакам невозможно (все они грамотрицательные палочки). Для того чтобы различить сходные между собой по морфологии микроорганизмы, их надо получить в чистой культуре и идентифицировать, что можно сделать с помощью микробиологического (бактериологического) метода исследования.
Микробиологический метод заключается в посеве исследуемого материала на питательные среды, выделении чистой культуры возбудителя и его идентификации. Определение вида и типа возбудителя производят по ряду признаков: морфологии, способности окрашиваться различными красителями (тинкториальные свойства), характеру роста на искусственных питательных средах (культуральные свойства), ферментации углеводов и белков (биохимические свойства). Окончательную принадлежность выделенной культуры к определенному виду (типу) микроорганизмов устанавливают после изучения антигенной структуры, используя различные иммунологические реакции (агглютинации, преципитации, нейтрализации и др.).
Если возбудители инфекционных заболеваний (риккетсии, вирусы, некоторые простейшие) не растут на искусственных питательных средах или необходимо выделить возбудителя из микробных ассоциаций, то используют метод заражения восприимчивых животных биологический.
Биологический метод осуществляют путем выделения возбудителя заболевания или его токсина при заражении лабораторных животных, восприимчивых к данному заболеванию. Диагноз устанавливают по воспроизведению у животного типичной картины заболевания и по выделению чистой культуры возбудителя из различных органов путем посева на питательные среды в случае заражения животного микробными ассоциациями. Идентификацию выделенного возбудителя проводят до вида (типа), используя бактериологический метод. Биологический метод используют также при определении вирулентности возбудителей.
Серологические методы диагностики инфекционных заболеваний основаны на выявлении специфических иммунных антител в сыворотке крови больного. Для этого используют различные иммунологические реакции: реакцию агглютинации при брюшном тифе (Видаля), реакцию Райта при бруцеллезе, реакцию связывания комплемента (Вассермана) при сифилисе, реакцию непрямой гемагглютинации при многих инфекционных заболеваниях, реакцию нейтрализации и торможения гемагглютинации при вирусных заболеваниях.
Аллергический метод позволяет поставить диагноз инфекционного заболевания с помощью аллергических проб — накожных и внутрикожных. Метод выявляет повышенную чувствительность замедленного типа, возникающую в организме при многих инфекционных заболеваниях. Введение аллергена накожно или внутрикожно используют для диагностики бруцеллеза, туляремии, токсоплазмоза и других заболеваний.
Широкое применение находит ИФА (ELISA), основанный на использовании специфических вирусных белков, выделенных из зараженных клеток или полученных методом генной инженерии. Вирусные антигены сорбируют на стенках пластиковых ячеек и инкубируют с исследуемой сывороткой. После отмывания несвязавшихся белков в ячейки добавляют так называемые вторые антитела - ковалентно связанные с ферментом (обычно пероксидазой или ЩФ) антитела к IgM или IgG человека. Избыток вторых антител отмывают, а количество связавшихся, зависящее от количества противовирусных антител в сыворотке, оценивают по интенсивности ферментативной цветной реакции. ИФА поддается автоматизации. Это более чувствительный и менее трудоемкий метод, чем иммунофлюоресценция, гемагглютинация и гемадсорбция.
Иммуноблоттинг позволяет одновременно выявлять антитела к нескольким вирусным антигенам. Для этого смесь антигенов, разделенных с помощью электрофореза и перенесенных на адсорбирующую мембрану, инкубируют с сывороточными антителами. С помощью этого метода также можно оценить степень специфичности антител сыворотки, сравнив интенсивность реакции с вирусными и клеточными антителами. Иммуноблоттинг - высокочувствительный и высокоспецифичный метод, но он не подходит для массовых исследований и его результаты трудно оценить количественно.
Формы иммунного ответа.
Иммунный ответ – это цепь последовательных сложных кооперативных процессов, идущих в иммунной системе в ответ на действие антигена в организме.
Различают:
1) первичный иммунный ответ;
2) вторичный иммунный ответ.
Любой иммунный ответ состоит из двух фаз:
1) индуктивной(представление и распознавание антигена);
2) продуктивной(обнаруживаются продукты иммунного ответа).
Далее иммунный ответ возможен в виде по одного из трех вариантов:
1) клеточный иммунный ответ;
2) гуморальный иммунный ответ;
3) иммунологическая толерантность.
Клеточный иммунный ответ – это функция T-лимфоцитов. Происходит образование эффекторных клеток – T-киллеров, способных уничтожать клетки, имеющие антигенную структуру путем прямой цитотоксичности и путем синтеза лимфокинов, которые участвуют в процессах взаимодействия клеток (макрофагов, T-клеток, B-клеток) при иммунном ответе. В регуляции иммунного ответа участвуют два подтипа T-клеток: T-хелперы усиливают иммунный ответ, T-супрессоры оказывают противоположное влияние.
Гуморальный иммунитет – это функция B-клеток. Т-хелперы, получившие антигенную информацию, передают ее В-лимфоцитам. В-лимфоциты формируют клон антителопродуцирующих клеток. При этом происходит преобразование B-клеток в плазматические клетки, секретирующие иммуноглобулины (антитела), которые имеют специфическую активность против внедрившегося антигена.
Образующиеся антитела вступают во взаимодействие с антигеном с образованием комплекса АГ – АТ, который запускает в действие неспецифические механизмы защитной реакции. Эти комплексы активируют систему комплемента. Взаимодействие комплекса АГ – АТ с тучными клетками приводит к дегрануляции и выделению медиаторов воспаления – гистамина и серотонина.
При низкой дозе антигена развивается иммунологическая толерантность. При этом антиген распознается, но в результате этого не происходит ни продукции клеток, ни развития гуморального иммунного ответа.
Иммунный ответ характеризуется:
1) специфичностью (реактивность направлена только на определенный агент, который называется антигеном);
2) потенцированием (способностью производить усиленный ответ при постоянном поступлении в организм одного и того же антигена);
3) иммунологической памятью (способностью распознавать и производить усиленный ответ против того же самого антигена при повторном его попадании в организм, даже если первое и последующие попадания происходят через большие промежутки времени).
Иммунитет- целостная система биологических механизмов самозащиты организма, с помощью которых он распознает и уничтожает все чужеродное (генетически отличающееся).
Выделяют две основные формы иммунитета- видовой (врожденный) и приобретенный. Приобретенный иммунитет может быть естественный (результат встречи с возбудителем) и искусственный (иммунизация), активный (вырабатываемый) и пассивный (получаемый), стерильный (без наличия возбудителя) и нестерильный (существующий в присутствии возбудителя в организме), гуморальный и клеточный, системный и местный, по направленности- антибактериальный, антивирусный, антитоксический, противоопухолевый, антитрансплантационный.
Иммунопатоло́гия - раздел иммунологии, изучающий поражение иммунной системы при различных заболеваниях.
Болезни иммунной системы делят на следующие группы: иммунодефицитные заболевания, которые обусловлены отсутствием клеточной субпопуляции или молекулярным дефектом и Аутоиммунные болезни, характеризующиеся иммунным ответом на белки собственного организма; Аллергия замедленного и немедленного типа, развивающаяся вследствие повышенного иммунного ответа на чужеродные белки; иммунопролиферативные заболевания, характеризующиеся неопластическими изменениями лимфоцитов; гемолитическая болезнь новорожденных, обусловленная резус-конфликтом организмов матери и плода
Роль микрофлоры полости рта при патологических изменениях в пародонте
Пародонт представляет собой комплекс тканей, имеющих генетическую и функциональную общность: периодонт, кость альвеолы с надкостницей, десна и ткани зуба. Ткани пародонта постоянно подвергаются бактериальным, температурным и механическим воздействиям. Целостность пародонта является надежной защитой организма от действия неблагоприятных факторов. При нарушении внутренней среды, обусловленном местными (микробы, токсины, ферменты, травма, перегрузка) или общими факторами (гиповитаминозы, заболевания, нарушения обмена веществ, нейротрофические расстройства), развиваются структурно-функциональные изменения тканей пародонта, что приводит к снижению барьерных функций и развитию заболеваний.
Гингивит. Различают несколько форм воспаления тканей десны, наиболее часто встречается катаральный гингивит. Он может быть локализованным (в области одного-двух зубов) или генерализованным.
Ведущая роль в возникновении гингивита принадлежит зубной бляшке. Она окружает весь зуб, в том числе и место соединения эмали с тканями десны. Принято различать бляшку над- и поддесневую.
Бляшка содержит большое количество микробов - в 1 мг налета 100-300 млн. бактериальных клеток, причем состав разных частей бляшки в пределах одного зуба и бляшек на разных зубах различен. Помимо кариесногенных микроорганизмов в бляшке обнаруживаются бактерии, вызывающие заболевания пародонта: Actinomyces viscosus, Prevotella melaninogenica, Veillonella alcalescens, фузобактерии и неорганические вещества, которые являются хорошей средой для развития и жизнедеятельности микрофлоры. Со временем в зубной бляшке повышается концентрация неорганических веществ, она является матрицей для образования зубного камня.
При локализации зубной бляшки в пришеечной области десна подвергается раздражению и хронической интоксикации. Экспериментально доказано, что при такой локализации бляшка способна вызвать не только воспаление десны, но и резорбцию альвеолярной кости.
При язвенном гингивите наряду со стрептококками и стафилококками в большом количестве обнаруживаются фузобактерии и спирохеты. Наличие фузоспирохетоза свидетельствует о нарушении резистентности тканей пародонта к микрофлоре полости рта.
Пародонтит. При длительном течении катарального гингивита воспалительный процесс может распространиться на прикрепленную десну и костную ткань. Следствием этого является разрушение эпителиального прикрепления и образование патологического зубодесневого кармана, в результате чего таким образом возникает пародонтит, характеризующийся кровоточивостью десен, отложением поддесневой зубной бляшки и камня, подвижностью зубов, выделением гноя из-под десны при надавливании. Однако основным признаком пародонтита является патологический зубодесневой карман.
Микрофлора патологического зубнодесневого кармана весьма разнообразна и зависит от формы и стадии заболевания. Вначале преобладает факультативно-анаэробная и аэробная кокковая флора - энтерококки, нейссерии, -гемолитические стрептококки группы Н (S.sanguis), диплококки, близкие по свойствам пневмококкам. Позднее эту флору вытесняют более строгие анаэробы: пептострептококки, вейлонеллы, лептотрихии, бактероиды, фузбактерии, вибрионы, актиномицеты. При гноетечии в мазках из содержимого десневого кармана наблюдается картина, характерная для фузоспирохетозов. Отмечается обилие простейших (Entamocba gingivalis, Trichomonas elongata).
Микроорганизмы патологического зубнодесневого кармана и продукты их жизнедеятельности оказывают существенное влияние как на состояние околозубных тканей, так и на организм в целом. Местное влияние особенно выражено за счет бактерий, продуцирующих гистологические ферменты (гиалуронидазу, хондроитинсульфатозу, коллагеназу и другие протеиназы). При распаде грамотрицательных микроорганизмов выделяются эндотоксин и другие цитологические вещества; кроме того, бактерии вырабатывают токсические метаболиты (аммиак, органические кислоты, сероводород). Все эти соединения могут существенно нарушать нормальный метаболизм тканей или вызывать воспалительные реакции, которые сами по себе могут быть деструктивными. Гистологическое действие бактериальных ферментов считают основной причиной появления патологического десневого кармана. Всасываясь в кровь, микробные и тканевые токсины обусловливают хроническую интоксикацию и сенсибилизацию организма. Так, с помощью кожно-аллергических проб у больного было выявлено состояние гиперчувствительности к стрептококкам, стафилококкам, нейссериям, актиномицетам и другим микроорганизмам. Значение микрофлоры десневых карманов как очагов инфекции и аллергизации особенно возрастает при сердечно-сосудистых и аллергических заболеваниях, анемиях, коллагенозах.
Билет 27
Принципы и методы выделения и идентификации чистой культуры бактерий. Этапы исследования.
Основные принципы культивирования бактерий:
Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее для посевов на чашках Петри — металлические или стеклянные шпатели. При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры). Посевы «газоном» производят шпателем на питательный агар в чашке Петри.Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.
Питательной средой в микробиологии называют среды, содержащие различные соединения сложного или простого состава, которые применяются для размножения бактерий или других микроорганизмов в лабораторных или промышленных условиях. Большое значение имеет наличие в питательной среде ростовых факторов, которые катализируют метаболические процессы микробной клетки (витамины группы В, никотиновая кислота и др.). Искусственные среды готовят по определенным рецептам из различных настоев или отваров животного или растительного происхождения с добавлением неорганических солей, углеводов и азотистых веществ. В бактериологической практике чаще всего используют сухие питательные среды, которые получают на основе достижений современной биотехнологии. Для их приготовления используют экономически рентабельное непищевое сырье: утратившие срок годности кровезаменители (гидролизин—кислотный гидролизат крови животных, аминопептид — ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды могут храниться в течение длительного времени, удобны при транспортировке и имеют относительно стандартный состав. По консистенции питательные среды могут быть жидкими, полужидкими, плотными. Плотные среды готовят путем до-бавления к жидкой среде 1,5—2% агара, полужидкие — 0,3— 0,7 % агара. Агар представляет собой продукт переработки осо-бого вида морских водорослей, он плавится при температуре 80—86 °С, затвердевает при температуре около 40 °С и в застыв-шем состоянии придает среде плотность. В некоторых случаях для получения плотных питательных сред используют желатин (10—15%). Ряд естественных питательных сред (свернутая сыворотка крови, свернутый яичный белок) сами по себе являются плотными. По целевому назначению среды подразделяют на основные, элективные и дифференциально-диагностические.
К основным относятся среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду — питательный бульон и плотную — питательный агар. Такие среды служат основой для приготовления сложных питательных сред — сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бактерий. Элективные питательные среды предназначены для избирательного выделения и накопления микроорганизмов определенного вида (или определенной группы) из материалов, содержащих разнообразную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особенностей, которые отличают данные микроорганизмы от большинства других. Например, избирательный рост стафилококков наблюдается при повышенной концентрации хлорида натрия, холерного вибриона — в щелочной среде и т. д. Дифференциально-диагностическиепитательные среды применяются для разграничения отдельных видов (или групп) мик-роорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий различаются между собой по биохи-мической активности вследствие неодинакового набора ферментов. Особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. Особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды чаще всего применяют в научно-исследовательской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов. В последние годы в целях экономии питательных сред и ускоренной идентификации некоторых микроорганизмов (энтеробактерии, стафилококки, стрептококки и др.) применяются так называемые микротест-системы(МТС). Они представляют собой полистироловые пластины с лунками, в которых содержатся стерильные дифференциально-диагностические среды. Стерилизацию МТС проводят УФ-облучением. Микротест-системы особенно удобны при массовых бактериологических исследованиях в практических лабораториях.Требования, предъявляемые к питательным средам. Любая питательная среда должна отвечать следующим требованиям: содержать все необходимые для размножения микроорганизмов вещества в легкоусвояемой форме; иметь оптимальные влажность, вязкость, рН, быть изотоничной и по возможности прозрачной. Каждую питательную среду стерилизуют определенным способом в зависимости от ее состава.
Патогенность и вирулентность бактерий. Количественное определение, единицы измерения. Факторы патогенности бактерий.
