Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_13_-_90.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
11.13 Mб
Скачать

41 Всвсывание углеводов в различных отделах жкт.

Ротовая полость – расщепление крахмала (см. выше)

Желудок – у моногастричных, не всасывается не перевариваются углеводы из за резко кослой среды.

Желудок у жвачных – происходит всасывание в рубце в виде ЛЖК.

Тонкий кишечник – у моногатричных под действием ферментов углеводы расщепляются до моносахаров, растворимых в воде и всасываются в стенке кишечника в виде фосфорных эфиров, далее поступающих с кровяным руслом в воротную вену печени, где глюкоза превращается в гликоген, откладывающийся в клетках в виде глыбок. Синтез гликогена из глюкозы – глюкогенез.

Изомеризация моносахаридов – происходит в стенке кишечника, т.е. моносахара превращаются в глюкозу, всасываются и поступают в кровь.

42 ЦТК – надеюсь, ребята, вы найдете у себя все реакции, а результат я напишу.

ЦТК – аэробное расщепление глюкозы в присутствии кислорода, является продолжением гликолиза и заканчивается с образованием СО2 и Н2О.

Связь гликолиза и ЦТК – имеют общее звено ПВК.

Гликолиз протекает в гиалоплазме, а ЦТК в митохондриях.

Значение – в ЦТК происходит окончательное окисление уксусной кислоты, которая образуется при окислении белков, жиров и углеводов.

Роль ЩУК – главный катализатор в ЦТК! Также катализаторами в ЦТК являются ди- и трикарбоновые кислоты.

Получение ЩУК – молочная кислота, полученная в гликолизе, обратной реакцией дегидрируется и переходит в ПВК, и часть ПВК используется для синтеза ЩУК

Результат ЦТК.

В одном цикле ЦТК из каждой молекулы ПВК образуется 18 молекул АТФ. КПД ЦТК = 0,5%, остальное расходуется в виде тепла. Таким образом, из 1 молекулы глюкозы, образуется 38 молекул АТФ, 36 в ЦТК и 2 в гликолизе.

43

Гликолиз.

Результат. При гликолизе, из 1 молекулы глюкозы, образуется 2 молекулы молочной кислоты, освобождается энергия в 30кКал – до 40% этой энергии находится в АТФ (6, 9 реакции), 60% уходит на тепло. КПД гликолиза 0,35-0,40%.

44. Некоторые особенности химического состава сердечной мышцы и гладкой мускулатуры

Сердечная мышца по содержанию ряда химических соединений занимает промежуточное положение между скелетной мускулатурой и гладкими мышцами. Так, общее содержание белкового азота в скелетных мышцах кролика составляет 30–31 мг/г, а в гладкой мускулатуре (миометрий) – до 20,3 мг/г. В сердечной мышце и особенно в гладких мышцах значительно меньше миофибриллярных белков, чем в скелетной мышце. Общее содержание миофибриллярных белков в гладкой мышечной ткани желудка примерно в 2 раза ниже, чем в скелетных мышцах. Концентрация белков стромы в гладких мышцах и миокарде выше, чем в скелетной мускулатуре. Известно, что миозин, тропомиозин и тропонин сердечной мышцы и гладкой мускулатуры заметно отличаются по своим физико-химическим свойствам от соответствующих белков скелетной мускулатуры. Отмечены определенные особенности и во фракциях саркоплазматических белков. Саркоплазма гладкой мускулатуры и миокарда в процентном отношении содержит больше миоальбумина, чем саркоплазма скелетной мускулатуры. Содержание АТФ в сердечной мышце на 1 г ткани (2,60 мкмоль) ниже, чем в скелетной (4,43 мкмоль), и выше, чем в гладкой мускулатуре (1,38 мкмоль). По содержанию гликогена сердечная мышца также занимает промежуточное положение между скелетной и гладкой мускулатурой. По данным С.Е. Северина (1965), как в сердечной, так и в гладкой мускулатуре обнаруживаются лишь следы ансерина и карнозина (не более 0,1 г на 1 кг сырой массы).

Имеется определенная зависимость между характером работы мышц и содержанием фосфоглицеридов. Миокард по сравнению с другими мышечными тканямибогаче фосфоглицеридами, при окислении которых, по-видимому, вырабатывается значительная часть энергии, необходимой для его сокращения.

ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ МЫШЦ

Мышечный аппарат человека и животных характеризуется полифункциональностью. Однако основной функцией мышц является осуществление двигательного акта, т.е. сокращение и расслабление. При сокращении мышц осуществляется работа, связанная с превращением химической энергии в механическую. В данном разделе в основном рассматривается структурная основа процесса сокращения поперечно-полосатых мышц позвоночных, поскольку этот процесс изучен наиболее полно. Как отмечалось, сократительная система поперечно-полосатой мышцы состоит из перекрывающихся белковых нитей, которые скользят относительно друг друга. Сокращение происходит за счет энергии, освобождающейся при гидролизе АТФ. В поперечно-полосатой мышце сокращение зависит от концентрации ионовСа2+, которая в свою очередь регулируется сарко-плазматическим ретикулумом – специализированной системой мембран, накапливающей Са2+ в состоянии покоя и высвобожающей его при воздействии на мышечное волокно нервного импульса.

Механизм мышечного сокращения

Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8):

1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н3РО(Pi), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис.);

2) содержащая АДФ и Н3РО4 миозиновая «головка» может свободно вращаться под большим углом и (при достижении нужного положения) связываться с F-актином, образуя с осью фибриллы угол около 90° (см. рис.);

3) это взаимодействие обеспечивает высвобождение АДФ и Н3РО4 из актин-миозинового комплекса. Актомиозиновая связь имеет наименьшую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис.);

4) новая молекула АТФ связывается с комплексом миозин–F-актин (см. рис.) ;

5) комплекс миозин–АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо зависит от связывания АТФ с актин-миозиновым комплексом (см. рис. 20.8, д). Затем цикл возобновляется.

Регуляция сокращения и расслабления мышц. Сокращение любых мышц происходит по общему механизму, описанному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслабления, однако всегда ключевая регуляторная роль принадлежитионам Са2+. Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция. Наибольшая сократительная активность наблюдается при концентрации ионов Са2+ около 10–6–10–5 М. При пониженииконцентрации до 10–7 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ. По современным представлениям, в покоящейся мышце (в миофибриллах и межфибриллярном пространстве) концентрация ионов Са2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са2+-связывающегобелка, получившего название кальсеквестрина, входящего в состав этих структур. Связывание ионов Са2+ разветвленной сетью трубочек и цистерн саркоплазматической сети не является простой адсорбцией. Это активный физиологический процесс, который осуществляется за счет энергии, освобождающейся при расщеплении АТФ Са2+-зависимой АТФазой саркоплазматической сети. При этом наблюдается весьма своеобразная картина: скорость выкачивания ионов Са2+из межфибриллярного пространства стимулируется этими же ионами. В целом такой механизм получил название «кальциевая помпа» по аналогии с хорошо известным в физиологии натриевым насосом. Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокойконцентрации АТФ объясняется снижением в результате действия кальциевой помпы концентрации ионов Са2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной активности и сократимость акто-миозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости мембран и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества ионов Са2+ в саркоплазму. Как отмечалось, «чувствительность» актомиозиновой системы кионам Са2+ (т.е. потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са2+ до 10–7 М) обусловлена присутствием в контрактильной системе (на нитях F-актина) белка тропонина, связанного с тропомиозином. В тропонин-тропомио-зиновом комплексеионы Са2+ связываются именно с тропонином. В молекуле тропонина при этом происходят конформационные изменения, которые, по-видимому, приводят к сдвигу всего тропонин-тропомиозинового стержня и деблокировке активных центров актина, способных взаимодействовать с миозином с образованием сократительного комплекса и активной Mg2+-АТФазы. В продвижении актиновых нитей вдоль миозиновых, по данным Э. Хаксли, важную роль играют временно замыкающиеся между нитями поперечные мостики, которые являются «головками» миозиновых молекул. Итак, чем большее число мостиков прикреплено в данный момент к акти-новым нитям, тем больше сила мышечного сокращения.

Наконец, если возбуждение прекращается, содержание ионов Са2+ в саркоплазме снижается (кальциевая помпа), то циклы прикрепление–освобождение прекращаются, т.е. «головки» миозиновых нитей перестают прикрепляться к актиновым нитям. В присутствии АТФ мышца расслабляется и ее длина достигает исходной. Если прекращается поступление АТФ (аноксия, отравление дыхательными ядами или смерть), то мышца переходит в состояние окоченения. Почти все поперечные мостики толстых (миозиновых) нитей присоединены при этом к тонким актиновым нитям, следствием чего и является полная неподвижность мышцы.

Биохимические изменения в организме при утомлении

При любой длительной мышечной нагрузке развивается состояние, характеризующееся временным снижением работоспособности. Такое состояние называется утомлением. Утомление состояние организма, возникающее вследствие длительной, напряженной деятельности и характеризующееся снижением работоспособности. Утомление - не патологическое состояние организма. Состояние утомления можно считать сигналом приближения изменений (сдвигов) в метаболизме, т.е. утомление выполняет защитную функцию.

Центральная роль в развитии утомления принадлежит нервной системе. В состоянии утомления снижается концентрация АТФ в нервных клетках, нарушается синтез ацетилхолина в синаптических образованиях, что приводит к нарушениям в деятельности центральной нервной системы по формированию двигательных импульсов и передаче их к работающим мышцам.

При развитии утомления работающая мышца тоже теряет свои источники энергии - АТФ, креатинфосфат, гликоген - в еще большей степени, чем нервные центры. Состояние утомления характеризуется угнетением деятельности желез внутренней секреции, что приводит к уменьшению синтеза гормонов, а это, в свою очередь, ведет к снижению активности ряда ферментов. Прежде всего это сказывается на активности Са2+-актомиозиновой АТФазы. В результате снижается скрость расщепления АТФ в мио-фибриллах, что приводит к уменьшению мощности выполняемой работы.

В состоянии утомления снижается активность ферментов аэробного окисления субстратов, в связи с чем нарушается сопряжение реакций окисления с синтезом АТФ. Для поддержания концентрации АТФ на должном уровне происходит усиление гликолиза, которое приводит к накоплению молочной кислоты и, как следствие, к закислению внутренних сред организма. С увеличением концентрации молочной кислоты происходит снижение рН крови. При выполнении интенсивных физических нагрузок спортсменами можно наблюдать снижение рН на 0,2 - 0,3 единицы, оно достигает 7,25 - 7,15 при норме 7,4. В период соревнований, когда нагрузка достигает максимальной величины, у спортсменов может быть зарегистрировано снижение рН крови до 7,0 - 6,9. Такое закисление крови приводит к нарушению гомеостаза; у спортсмена появляются боли в мышцах, тошнота, головокружение. В этих условиях происходят значительные изменения рН и в мышечной ткани, вызванные внутриклеточным метаболическим ацидозом. Это приводит к быстрому развитию последовательной цепи событий, приводящих к утомлению мышц. Снижение рН в мышцах отражается на скорости сократительных процессов; снижается активность Са2+-актомиозиновой АТФазы, уменьшается скорость максимального сокращения актомиозинового комплекса, увеличивается связывание катионов кальция с белками саркоплазматического ретикулума, изменяется активность ключевых ферментов гликолиза (например фосфофруктокиназы) и фосфорилазы (схема 7). Кроме того, внутриклеточный ацидоз приводит к усилению катаболизма мышечных белков, что сопровождается повышением содержания мочевины.

Утомление - целостная реакция организма, развивающаяся при ведущей роли центральной нервной системы. При этом, чем тяжелее работа, тем большее значение приобретают изменения, происходящие в работающих мышцах. Еще раз подчеркнем, что утомление является защитной реакцией организма, предохраняющей его от чрезмерных степеней функционального истощения, опасных для жизни.

Утомление может развиваться медленно, в результате длительной работы, и быстро, в результате кратковременной и напряженной работы. Между этими формами утомления есть целый ряд биохимических различий. Как правило, при интенсивной и кратковременной работе основной причиной утомления является развитие охранительного торможения в центральной нервной системе из-за нарушения соотношения АТФ/АДФ, связанного с образованием γ-аминомасляной кислоты. При продолжительной работе основными причинами утомления являются процессы, приводящие к нарушению энергообеспечения мышц.

Молочная кислота, или лактат, образуется в мышцах как продукт обмена в ходе анаэробного гликолиза и вызывает характерное чувство жжения в работающих мышцах за счет понижения pH. Особенно сильно концентрация молочной кислоты возрастает при выполнении упражнений на пампинг, суперсетов, форсированных повторений и др.

Существуют научные доказательства, что лактат стимулирует гипертрофию мышечных клеток и играет положительную роль в бодибилдинге. Это находит отражение в знаменитом выражении "No Pain No Gain".

Молочная кислота формируется при распаде глюкозы. Иногда называемая «кровяным сахаром», глюкоза является главным источником углеводов в нашем организме. Это основное топливо для мозга и нервной системы, так же как и для мышц во время физической нагрузки. Когда расщепляется глюкоза, клетки производят АТФ, который обеспечивает энергией большинство химических реакций в организме. Уровень АТФ определяет, как быстро и как долго наши мышцы смогут сокращаться при физической нагрузке.

Производство молочной кислоты не требует присутствия кислорода, поэтому этот процесс часто называют анаэробным. Ранее считалось, что мышцы производят молочную кислоту, когда испытывают нехватку кислорода из крови. Однако современные исследования показывают, что молочная кислота образуется даже в мышцах, получающих достаточно кислорода. Увеличение количества молочной кислоты в кровотоке свидетельствует лишь о том, что уровень её поступления превышает уровень удаления. Резкое увеличение (в 2—3 раза) уровня лактата в сыворотке крови наблюдается при тяжёлых расстройствах кровообращения, таких как геморрагический шок, острая левожелудочковая недостаточность и др., когда одновременно страдает и поступление кислорода в ткани и печеночный кровоток.

Зависимое от лактата производство АТФ очень незначительно, но имеет большую скорость. Это обстоятельство делает идеальным его использование в качестве топлива, когда нагрузка превышает 50 % от максимальной. При отдыхе и умеренной нагрузке организм предпочитает расщеплять жиры для получения энергии. При нагрузках в 50 % от максимума (порог интенсивности для большинства тренировочных программ) организм перестраивается на преимущественное потребление углеводов. Чем больше углеводов вы используете в качестве топлива, тем больше производство молочной кислоты.

Исследования показали, что у престарелых людей в головном мозге количество солей кислоты (лактатов) имеет повышенный уровень

Трупное окоченение.

Тру́пное окочене́ние (лат. rigor mortis) — один из признаков смерти, обусловленный посмертными химическими процессами в мышечной ткани и проявляющийся в затвердевании и тугоподвижности мышц конечностей трупа.

При наступлении смерти дыхание организма прекращается, в связи с чем в организм перестаёт поступать кислород, участвующий в образовании АТФ. АТФ перестаётгидролизоваться кальциевым насосом (Ca-АТФазой), и кальций перестаёт возвращаться в терминальные цистерны.[1] В связи с этим ионы кальция диффундируют из областей высокой концентрации (терминальные цистерны и межклеточная жидкость) в области низкой концентрации (саркомеры), связываясь с тропонином, что обуславливает соединение актина и миозина[2].

В отличие от обычного мышечного сокращения, тело не способно завершить цикл (из-за отсутствия АТФ), разорвав взаимодействие актина и миозина, из-за чего формируется стойкая мышечная контрактура, прекращающаяся лишь на фоне ферментативного разложения мышечной ткани

45. Жиры́, или триглицери́ды — органические вещества, продукты этерификации карбоновых кислот и трёхатомного спирта глицерина.

В живых организмах выполняют, прежде всего, структурную и энергетическую функции: они являются основным компонентом клеточной мембраны, а в жировых клетках сохраняется энергетический запас организма.

Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло.

Состав жиров

Состав жиров определили французские ученые М. Шеврель и М. Бертло. В 1811 году М. Шеврель установил, что при нагревании смеси жира с водой в щелочной среде образуются глицерин и карбоновые кислоты (стеариновая и олеиновая). В 1854 году химик М. Бертло осуществил обратную реакцию и впервые синтезировал жир, нагревая смесь глицерина и карбоновых кислот.

Состав жиров отвечает общей формуле   

где R¹, R² и R³ — радикалы (одинаковых или различных) жирных кислот.

Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечетных» кислотных радикалов в жирах обычно менее 0,1 %).

Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях и частично растворимы в этаноле (5—10 %)[1].

Природные жиры чаще всего содержат следующие жирные кислоты:

Насыщенные: Алкановые кислоты:

  • стеариновая (C17H35COOH)

  • маргариновая (C16H33COOH)

  • пальмитиновая (C15H31COOH)

  • капроновая (C5H11COOH)

  • масляная (C3H7COOH)

Ненасыщенные: Алкеновые кислоты:

  • пальмитолеиновая (C15H29COOH, 1 двойная связь)

  • олеиновая (C17H33COOH, 1 двойная связь)

Алкадиеновые кислоты:

  • линолевая (C17H31COOH, 2 двойные связи)

Алкатриеновые кислоты:

  • линоленовая (C17H29COOH, 3 двойные связи)

  • арахидоновая (C19H31COOH, 4 двойные связи, реже встречается)

В состав некоторых входят остатки и насыщенных, и ненасыщенных карбоновых кислот.

Основные жирные кислоты пищи и их физиологическое значение

Жирная кислота пищи

Основной источник

Физиологическое

значение и пути

превращения

Заменимость

для

организма

Насыщенные

Масляная 4:0

Молочный жир

Быстрое

окисление

в тканях

Заменимые

Каприловая 8:0

Пальмоядровое масло

Каприновая 10:0

Кокосовое масло

Лауриновая 12:0

Пальмоядровое масло, коко­совое масло

Гиперхолестеринемический

эффект, повыше­ние содержания липопротеидов

низкой плотности

Миристиновая 14:0

Молочный жир, пальмо­ядровое масло

Пальмитиновая 16:0

Большинство жиров и масел

Стеариновая18:0

Тоже

Нейтральное

действие на обмен

жиров

Мононенасыщенные

Пальмитолеиновая 16:1 п-7

Рыбий жир

Гипохолестеринемический эффект

Заменимые

Олеиновая 18:1 n-9

Большинство жиров и масел

Элаидиновая{транс) 18:1 п-9

Гидрогенизированные расти­тельные жиры

Снижение кон­центрации ЛПВП*

Полиненасыщенные

Линолевая 18:2 n-6

Большинство растительных

Масел

Гипохолестеринемический эффект, синтез биологи­чески активных соединений

Незамени­мые

Линоленовая 18:3п-3

Ряд расти­тельных масел

Арахидоновая 20:4 n-6

Свиной жир

Гипохолестеринемический эффект, синтез биологи­чески активных соединений, регу­ляция экспрессии генов

Частично могут синте­зироваться из лино-левой и линолено-вой

Эйкозапентаеновая 20:5 п-3

Жир морских рыб

Докозагексаеновая 22:6 п-3

Жир морских рыб

* ЛПВП — липопротеиды высокой плотности.

46. Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках[1]. Будучи одним из основных компонентов биологических мембран, липиды влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах[2]. Также липиды образуют энергетический резерв организма, участвуют в создании водоотталкивающих и термоизоляционных покровов, защищают различные органы от механических воздействий и др.[1] К липидам относят некоторые жирорастворимые вещества, в молекулы которых не входят жирные кислоты, например, терпеныстерины. Многие липиды — продукты питания, используются в промышленности и медицине

Классификация липидов, как и других соединений биологической природы, — весьма спорный и проблематичный процесс. Предлагаемая ниже классификация хоть и широко распространена в липидологии, но является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды

Простые липиды — липиды, включающие в свою структуру углерод(С), водород(H) и кислород(O).

Примеры жирных кислот: миристиновая (насыщенная жирная кислота) и миристолеиновая (мононенасыщенная кислота) имеют 14 атомов углерода.

  • Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения.

  • Жирные альдегиды — высокомолекулярные альдегиды, с числом атомов углерода в молекуле выше 12.

  • Жирные спирты — высокомолекулярные спирты, содержащие 1-3 гидроксильные группы

  • Предельные углеводороды с длинной алифатической цепочкой

  • Сфингозиновые основания

  • Воски — сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов.

  • Триглицериды (Жиры)

Сложные

Сложные липиды — липиды, включающие в свою структуру помимо углерода(С), водорода(H) и кислорода(О) другие химические элементы. Чаще всего: фосфор(Р), серу(S), азот(N).

Общее строение фосфолипидов Заместители R1 и R² — остатки жирных кислот, X зависит от типа фосфолипида.

  • Полярные

    • Фосфолипиды — сложные эфиры многоатомных спиртов и высших жирных кислот, содержащие остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.

    • Гликолипиды — сложные липиды, образующиеся в результате соединения липидов с углеводами.

    • Фосфогликолипиды

    • Сфинголипиды — класс липидов, относящихся к производным алифатических аминоспиртов.

    • Мышьяколипиды

  • Нейтральные

    • Ацилглицериды

      • Диглицериды

      • Моноглицериды

    • Церамиды

    • Эфиры стеринов

    • N-ацетилэтаноламиды

Оксилипиды

  • Оксилипиды липоксигеназного пути

  • Оксилипиды циклооксигеназного пути

Во́ски — распространённые в растительном и животном мире смеси простых липидов (сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов). В состав молекул липидов, составляющих воски (в отличие от жиров, имеющих сходное строение) не входит глицерин.

В англоязычной традиции к воскам относят очень широкий класс воскоподобных веществ, в том числе полученный перегонкой нефти парафин (смесь тяжелых углеводородов, как правило, предельного ряда, линейного строения). В то же времяБольшая советская энциклопедия даёт более строгую формулировку, разделяя натуральные и синтетические воски]. По БСЭ парафин вообще не относится к воскам.

Воски характеризуются малой химической активностью, нерастворимы в воде, но хорошо растворимы в бензинехлороформе,эфире.

По происхождению воски можно разделить на животные и растительные

Пчели́ный воск — продукт жизнедеятельности пчёл, сложное органическое соединение. Зарегистрирован в качестве пищевой добавки Е-901.

Пчелиный воск выделяется специальными железами медоносных пчёл, из него пчёлы строят соты.

Представляет собой многокомпонентное твёрдое вещество от белого (с лёгким жёлтым оттенком) до жёлто-бурого цвета с характерным медовым запахом. Под действием солнечного света в тонких слоях пчелиный воск осветляется. При наличии примеси прополиса пчелиный воск может приобретать зеленоватый оттенок.

Спермаце́т — воскоподобное вещество, получаемое при охлаждении жидкого животного жира (спермацетового масла), заключённого в фиброзном спермацетовом мешке в голове кашалота, а также некоторых других китообразных (например, китов-бутылконосов). Прежде спермацет ошибочно принимали за сперму кашалота (отсюда название).

На воздухе спермацет быстро затвердевает, образуя мягкую, желтоватую воскоподобную массу. В прошлом его применяли для изготовления мазей, помад и т. д., а также часто делали свечи.

Содержание собственно спермацета в спермацетовом масле колеблется от 8 до 20 %. Его отделяют вымораживанием и фильтрованием или кристаллизацией израстворителей. Спермацет содержится также в сале кашалота; в этом случае сало-сырец вначале вытапливают и из полученного жира охлаждением выделяют спермацет. Кристаллизуется спермацет при 6 °C, затем его очищают от жирной фракции отпрессовкой и путём нагревания со щелочью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]