- •24)Переваривание белков.
- •25. Понятие об азотистом равновесии организма. Положительный и отрицательный азотистый баланс. Белковый минимум. Заменимые и незаменимые аминокислоты. Полноценные, неполноценные белки.
- •26. Особенности азотистого обмена у жвачных. Румено-гепатическая. Циркуляция азота.
- •27. Сущность внутриклеточного обмена белков. Транспортировка аминокислот. Дезаминирование аминокислот и судьба возникших при этом безазотистых продуктов.
- •28. Биосинтез аминокислот в организме. Переаминирование аминокислот и значение этого процесса. Аминоферазы. Восстановительное аминирование.
- •30. Побочные продукты белкового обмена. Протеиногенные амины, их образование из аминокислот и физиологическое действие. Кадаверин. Путресцин. Гистамин.
- •31. Протеиногенные фенолы и их образование из аминокислот. Защитные синтезы организма - образование парных серноэфирных и глюкуроновых кислот мочи.
- •32. Обмен нуклеопротеидов. Переваривание их в желудочно-кишечном тракте и всасывание. Синтез нуклеиновых кислот.
- •33. Окислительное превращение пуриновых оснований и образование мочевой кислоты и аллантоина в организме животных.
- •34. Нуклеиновые кислоты. Первичная и вторичная структуры днк и рнк. Значение днк и рнк в организме.
- •35. Классификация углеводов. Моносахариды и их основные типы. Стереоизомерия. Важнейшие конфигурации моносахаридов животного происхождения. Таутомерия моносахаридов.
- •36. Реакция окисления моносахаридов. Глюконовая, сахарная и глюкуроновая кислоты. Глюкозиды, их образование и свойства. Аминосахара.
- •37. Дисахариды восстанавливающие и невосстанавливающие. Лактоза.
- •39 Содержание глюкозы в крови с.Х. Животных в мг%
- •40 Условия переваривания углеводов в жкт.
- •41 Всвсывание углеводов в различных отделах жкт.
- •44. Некоторые особенности химического состава сердечной мышцы и гладкой мускулатуры
- •47. Стероиды: классификация
- •50. Цереброзиды, их участие в образовании нервной ткани и строение.
- •52. Сфингофосфатиды, их участие в образовании нервной ткани и строение.
- •54. Желчные пигменты, их взаимосвязь, источник образования в организме и дальнейшая судьба. Роль желчи в переваривании и всасывании жиров.
- •60. Связь между белками и жирами - возможность превращения белков в жиры. Связь между углеводами и жирами. Практика откорма с.-х. Животных. Пути превращения углеводов в жирные кислоты и глицерин.
- •61. Креатин мышц и его образование. Креатин-фосфорная кислота и ее физиологическая роль. Образование креатинина мочи.
- •62. Развитие учения о биологическом окислении. Теория Баха и Палладина. Конечные продукты биологического окисления, дыхательный коэффициент. Окислительное фосфорилирование.
- •64. Пути пополнения запасов воды в организме животных, её удаление. Состав и свойства мочи с.-х. Животных. Регуляция водного обмена.
- •65. Участие воды в образовании тканей животного организма. Роль воды в процессах передвижения, всасывания веществ.
- •67. Роль русских ученых в развитии учения о ферментах (Кирхгофф, Манассина, Лебедев, Павлов). Химическая природа и общие свойства ферментов как биологических катализаторов. Активные центры ферментов.
- •68. Классификация ферментов, химические свойства ферментов и механизм их действия.
- •69.Ферменты молока.
- •70. Гормоны, их классификация, особенности в строении гормонов и их физиологическая роль. Использование гормонов в животноводстве и ветеринарии.
- •71. Стероидные гормоны, их строение и физиологическая роль.
- •72. Витамины и их физиологическая роль. Классификация витаминов. Понятие об авитаминозах, гипо- и гипервитаминозах. Характеристика жирорастворимых витаминов.
- •73. Строение, свойства и биологическая роль водорастворимых витаминов. Связь витаминов с ферментами.
- •74. Обмен веществ в тканях печени и её функции.
- •75. Обезвреживающая функция печени
- •76. Роль печени в белковом обмене
- •77. Роль печени в обмене липидов
- •78. Роль печени в углеводном обмене
- •79. Обмен веществ в почках. Химизм образования мочи и её состав
- •80. Значение общего анализа мочи в ветеринарии. Патологические составные части мочи
- •81. Биосинтез составных частей мяса
- •83.Образование составных частей молока
- •84.Химический состав молока
- •87.Биосинтез составных частей яйца
- •88.Химический состав крови
- •89.Химический состав скелетных мышц
- •90.Биохимия нервной ткани
№13 Хроматография - это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Метод основан на различном распре-делении веществ между двумя несмешивающимися фазами - подвижной и неподвижной.
хроматографию можно определить как процесс, ос-нованный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль непод-вижного сорбента. Чем сильнее сродство компонента к неподвижной фа-зе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компо-ненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержат-ся в начале пути, другие продвинутся дальше. В хроматографическом про-цессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) ас-пекты.
Бумажная хроматография. Бумажная хроматография используется для идентификации компонентов смеси аминокислот с ди- и три-пептидами, получаемой при частичном гидролизе белков и полипептидов.
Гидролиз может быть осуществлен кислотным, щелочным или ферментативным методом. Кислотный метод используется чаще (6 н. HCl, 8 н. H2SO4). Гидролиз проводят при нагревании, иногда при повышенном давлении. Показателями окончания гидролиза могут служить: прекращение нарастания карбоксильных или аминных групп в гидролизате, либо отрицательная биуретовая реакция. Избыток гидролизующего реагента удаляют: серную кислоту осаждают Ca(OH)2, соляную кислоту отгоняют в вакууме, а остаток кислоты осаждают нитратом серебра.
Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподвижной фазой, и органическим растворителем, подвижной фазой, которая движется вдоль листа вверх или вниз. В качестве подвижной фазы используется смесь бутанол-уксусная кислота-вода (4:1:5). Более липофильные аминокислоты сильнее увлекаются органическим растворителем, более гидрофильные – проявляют большую тенденцию связываться с неподвижной фазой. Гомологические соединения, отличающиеся даже на одно метиленовое звено, движутся с различной скоростью и легко могут быть разделены. По окончании хроматографии бумагу высушивают и обрабатывают проявителем (0,5% раствор нингидрина в смеси ацетон-ледяная уксусная кислота-вода) и нагревают в течение нескольких минут. Аминокислоты проявляются в виде окрашенных пятен. Подвижность – постоянная величина, характерная для каждого соединения возрастает с увеличением молекулярной массы. Для аминокислот с неразветвленной цепью величина подвижности несколько больше, чем для соответствующих изомеров. Введение в молекулу полярных групп снижает подвижность соединения. Аминокислоты с объемными неполярными боковыми цепями (лейцин, изолейцин, фенилаланин, триптофан и др.) перемещаются быстрее, чем аминокислоты с более короткими неполярными боковыми цепями (пролин, аланин, глицин) или с полярными боковыми цепями (треонин, аргини, цистеин, гистидин, лизин). Это обусловлено большей растворимостью полярных молекул в гидрофильной стационарной фазе и неполярных – в органических растворителях.
Бумажная хроматография может быть использована для количественной оценки содержания аминокислот. Каждое пятно вырезают и элюируют подходящим растворителем; затем проводят количественный колориметрический (нингидриновый) анализ. В другом варианте бумагу опрыскивают нингидрином и измеряют с помощью фотометра интенсивность окрашивания пятна в отраженном или проходящем свете. При полуколичественной оценке содержание аминокислот оценивают по площади пятен на хроматограмме, которые пропорциональны концентрациям аминокислот в разделяемой смеси.
№14 Белки - основная и необходимая составная часть всех организмов. Именно Белки осуществляют обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному - повышения. Микроорганизмы обычно богаче белком (некоторые же вирусы являются почти чистыми белками). Таким образом, в среднем можно принять, что 10% биомассы на Земле представлено белком, то есть его количество измеряется величиной порядка 1012 - 1013 тонн. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например , процессы обмена веществ ( пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов , являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц ( актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий), покровы организма ( кожа, волосы, ногти и т.п.) , состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества.
Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существования белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.
Определение молекулярной массы белков возможно только в случае их хорошей растворимости. Одним из приемлемых методов является определение молекулярной массы по осмотическому давлению белковых растворов. Другой метод определения молекулярной массы основан на определении специфических групп, связанных известным соотношением с молем белка.
Для определения молекулярных масс белков ( и других высокомолекулярных соединений) существует ряд методов. Особенно большое значение среди них имеет метод ультрацентрифугирования.
К наиболее распространенным физико-химическим методам определения молекулярной массы белков наряду с седиментационными относятся гель-хроматография ( на колонках и в тонком слое), а также электрофорез в полиакриламидном геле в присутствии додецилсуль-фата натрия. Использование этих методов не требует сложной аппаратуры и большого количества исследуемого материала. Получаемые результаты хорошо воспроизводятся и, как правило, коррелируют с данными, полученными другими методами.
Наиболее часто тонкослойную хроматографию используют для определения молекулярной массы белков и белковых соединений.
Очевидно, что наиболее точным методом Определения молекулярной массы индивидуального белка или нуклеиновой кислоты является установление их первичной структуры, после чего молекулярную массу получают простым суммированием ее значений для отдельных мономерных звеньев. Поскольку на сегодняшнем уровне биохимии установление первичной структуры практически всегда является одной из основных целей исчерпывающего изучения биополимера, остальные методы определения молекулярной массы применяются в основном на промежуточных этапах исследования, а также в тех случаях, когда биополимер не удается получить в виде индивидуального, пригодного для детальных структурных исследований вещества. В этом параграфе речь будет идти именно о таких приближенных методах, используемых на первой фазе изучения биополимера.
Осаждение белков растворами нейтральных солей высокой концентрации (насыщенные растворы). Сильным высаливающим эффектом обладают сульфаты натрия (Na2SO4) и аммония ((NH4)2SO4).Механизм высаливания связан с тем, что добавляемые катионы и анионы снимают гидратную оболочку и одновременно, возможно, нейтрализуют заряд белка (состояние близкое к изоэлектрической точке). При таком осаждении сохраняются нативные свойства белков (биологическая активность) и сохраняются все уровни структурной организации белковой молекулы.Если затем к осадку белка добавить воду, удалить диализом соль, то белок снова перейдет в раствор и будет проявлять биологическую активность. Высаливание используют для разделения белков сыворотки крови, молока, яичного белка на две фракции: альбумины и глобулины. Глобулины, как менее растворимые белки и с большей молекулярной массой осаждаются первыми, при 50%-ном насыщении раствора белка (NH4)2SO4илиNa2SO4, а альбумины при 100%-ном.
Осаждение белков органическими водоотнимающими средствами
Этанол, метанол, ацетон, снимают гидратную оболочку белковых молекул и белки осаждаются. Если после осаждения белков спирт быстро удалить, а к белку добавить воду или физиологический раствор, то белок вновь растворяется. Длительное воздействие данных реагентов на белок может вызвать их денатурацию.
№15 Видовая и индивидуальная специфичность набора белков в данном организме определяет особенности его строения и функционирования. Набор белков в дифференцирующихся клетках одного организма определяет морфологические и функциональные особенности каждого типа клеток.
1 структура– посл-ть АМК, соединенных прочной пептидной связью. Она наделена особым биологическим значением – в ней заложена информация, какая будет 2ая, 3ая, 4ая.
2 структура–упаковка п/п цепи в ?-спираль или в ?-складчатый слой. В формировании спирали, главную роль играют водородные связи.
?-спираль: 1 завиток 3,6 АМК, через 18 АМК(5 витков) структурная конфигурация повторяется . Фиксируется спираль водородными связями и они удерживают ее как сжатую пружину, водородные связи от 1 к 4 амк в пределах 1 п/п цепи.
?-складчатый слой. В основе лежат водородные связи между п/п цепями, цепи лежат антипараллельно.
Неупорядоченная структура: ?+ ?, ? / ?. Тип укладки зависит от АМК, т.к. ряд амк способствуют образованию ?-спирали (глу, лей,тир), ряд – препятствует (про, о-про)
3 структура–упаковка п/п цепи в пространстве (архитектура), при этом радикалы амк занимают наиболее выгодные положения. Выделяют 2 типа: глобулярные и фибриллярные. Третичная стр-ра возникает автоматически и решающим при этом является взаимодействие радикалов с молекулами окр.рас-ля, влияние рН, взаимодей-ие с др.в-вами. 2 типа связей:1)ковалентно-пептидные дисульфидные 2)слабые водородные, ионные взаимодействия, гидрофобные. В основе формир.простр.стр-ры лежат доменные принципы.Домен– обособленная часть молекулы, облад.структ. и функц.автономией. В виде доменов формируются Б, имеющие более 200 амк в полипептидной цепи. Белки состоят из 1 п/п цепи, имеющие 3 уровня организации – субъединица или протомер. Такие белки выполняют свои нативные ф-ии.
4 структура– ассоциация протомеров определенным образом ориентированных относительно друг друга. Протомеры объединяются в олигомер. На поверхности протомеров формируются контактные участки, которые комплиментарно присоединяются друг к другу. Поцесс форм-ия пространственной стр-ры – фолдинг Б. Он контр-ся Б-шаперонами, кот. предотвращают взаимодействие несформированных конформаций.
Видовая и индивидуальная специфичность набора белков в данном организме определяет особенности его строения и функционирования. Набор белков в дифференцирующихся клетках одного организма определяет морфологические и функциональные особенности каждого типа клеток.
1 структура– посл-ть АМК, соединенных прочной пептидной связью. Она наделена особым биологическим значением – в ней заложена информация, какая будет 2ая, 3ая, 4ая.
2 структура–упаковка п/п цепи в ?-спираль или в ?-складчатый слой. В формировании спирали, главную роль играют водородные связи.
?-спираль: 1 завиток 3,6 АМК, через 18 АМК(5 витков) структурная конфигурация повторяется . Фиксируется спираль водородными связями и они удерживают ее как сжатую пружину, водородные связи от 1 к 4 амк в пределах 1 п/п цепи.
?-складчатый слой. В основе лежат водородные связи между п/п цепями, цепи лежат антипараллельно.
Неупорядоченная структура: ?+ ?, ? / ?. Тип укладки зависит от АМК, т.к. ряд амк способствуют образованию ?-спирали (глу, лей,тир), ряд – препятствует (про, о-про)
3 структура–упаковка п/п цепи в пространстве (архитектура), при этом радикалы амк занимают наиболее выгодные положения. Выделяют 2 типа: глобулярные и фибриллярные. Третичная стр-ра возникает автоматически и решающим при этом является взаимодействие радикалов с молекулами окр.рас-ля, влияние рН, взаимодей-ие с др.в-вами. 2 типа связей:1)ковалентно-пептидные дисульфидные 2)слабые водородные, ионные взаимодействия, гидрофобные. В основе формир.простр.стр-ры лежат доменные принципы.Домен– обособленная часть молекулы, облад.структ. и функц.автономией. В виде доменов формируются Б, имеющие более 200 амк в полипептидной цепи. Белки состоят из 1 п/п цепи, имеющие 3 уровня организации – субъединица или протомер. Такие белки выполняют свои нативные ф-ии.
4 структура– ассоциация протомеров определенным образом ориентированных относительно друг друга. Протомеры объединяются в олигомер. На поверхности протомеров формируются контактные участки, которые комплиментарно присоединяются друг к другу. Поцесс форм-ия пространственной стр-ры – фолдинг Б. Он контр-ся Б-шаперонами, кот. предотвращают взаимодействие несформированных конформаций.
№16 При изучении химического состава белка было установлено, что в его молекуле имеются свободные аминные (NH2) и карбоксильные (СООН) группы, которые в растворе находятся в виде NH3 и СООН. Следовательно, белки в растворе обладают амфотерными свойствами (амфолит, амфион). При пропускании электрического тока белки будут передвигаться в зависимости от заряда белковой молекулы к катоду или аноду В щелочных растворах белок играет роль аниона: например, при действии едкого натра происходит потеря Н+ из NH+3: В кислых растворах, наоборот, белок играет роль катиона, как в случае с соляной кислотой: Таким образом, фактором, определяющим поведение белка как аниона или катиона, является концентрация водородных ионов, или значение рН среды. При повышении концентрации водородных ионов (среда кислая - рН 0-7) белок становится катионом, при ее понижении (среда щелочная- рН 7 -14), наоборот, белковые частицы становятся анионами. Такая способность белка проявлять или кислотные, или щелочные свойства характеризует его как амфотерное соединение.
Однако при определенных значениях рН число положительных зарядов белка будет равно числу отрицательных и заряд молекулы в целом будет практически равен нулю. Белковая молекула не будет перемещаться в электрическом поле. При этих условиях белок находится в изоэлектрическом состоянии; рН раствора, при котором белок находится в изоэлектрическом состоянии, называетсяизоэлектрической точкой. Изоэлектрическая точка большинства природных белков лежит в слабокислой среде (рН 4,8-5,4). Молекула таких белков содержит больше карбоксильных групп, чем аминных. Это свидетельствует о том, что в их составе содержится больше дикарбоновых аминокислот (см. Аминокислоты). В изоэлектрической точке белок находится в наименее устойчивом состоянии и при незначительных изменениях рН среды в кислую или щелочную сторону он легко выпадает в осадок.
Амфотерность белков лежит в основе белковой буферной системы, которая участвует в поддержании определенной реакции среды крови. Амфотерные свойства белков используются для разделения их на отдельные фракции (метод электрофореза) с целью диагностики различных заболеваний и контроля за состоянием больного.
№17 1. ЛЕЙЦИН (L-Leucine) - незаменимая аминокислота, относящаяся к трем разветвленным аминокислотам.
Действуя вместе, они защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц, поэтому их прием часто рекомендуют в восстановительный период после травм и операций.
Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста.
К пищевым источникам лейцина относятся бурый рис, бобы, мясо, орехи, соевая и пшеничная мука и Maximol.
Наилучший эффект достигается при использовании лейцина вместе с изолейцином и валином.
2. ИЗОЛЕЙЦИН (L-Isoleucine) - незаменимая разветвленная аминокислота. Это отличная катаболическая добавка для защиты мышц в период интенсивных тренировок или во время диеты. ИЗОЛЕЙЦИН – незаменимая аминокислота, которая определяет физическую и психическую выносливость, т.к. регулирует процессы энергообеспечения организма. Является необходимой для синтеза гемоглобина, регулирует уровень сахара в крови. В силу вышеупомянутых свойств очень важна при физических нагрузках, а также при проблемах с психикой, в т.ч. при психических заболеваниях. Недостаток изолейцина вызывает возбуждение, беспокойство, тревогу, страх, утомление, головокружение, обморочные состояния, учащенное сердцебиение, потливость.
Источники изолейцина: миндаль, кешью, куриное мясо, турецкий горох, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки и Maximol.
Наилучший эффект достигается при использовании изолейцина вместе с лейцином и валином.
3. ВАЛИН (L-Valine) - незаменимая аминокислота, является одним из главных компонентов роста и синтеза тканей тела, стимулирует умственную деятельность, активность и координацию. Валин необходим для метаболизма в мышцах, восстановления поврежденных тканей, может быть использован мышцами в качестве источника энергии. При недостатке валина нарушается координация движений тела и повышается чувствительность кожи к многочисленным раздражителям.
Валина содержится: в сое и других бобовых, твердых сырах, икре, твороге, орехах и семечках, в мясе и птице, яйцах, в крупах и макаронах и Maximol.
Наилучший эффект достигается при использовании валина вместе с лейцином и изолейцином.
4. ЛИЗИН (L-Lysine) - незаменимая аминокислота, которая участвует в синтезе, формировании коллагена и восстановлении тканей. Недостаток лизина может приводить к раздражительности, усталости и слабости, плохому аппетиту, замедлению роста и снижению массы тела. Лизин участвует в синтезе антител, гормонов, ферментов и таким образом способствует противовирусной защите организма. Он необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых.
Пищевыми источниками лизина являются: сыр, яйца, рыба, молоко, картофель, красное мясо, соевые и дрожжевые продукты, Maximol и Renu.
5. МЕТИОНИН (L-Methionine) - незаменимая аминокислота, которая защищает суставы и обеспечивает детоксикацию организма. Метионин в организме переходит в цистеин, который является предшественником гпютатиона. Это очень важно при отравлениях, когда требуется большое количество гпютатиона для обезвреживания токсинов и защиты печени. Препятствует отложению жиров. От количества метионина в организме зависит синтез таурина, который, в свою очередь, снижает реакции гнева и раздражительности, снижает гиперактивность у детей. Метионин применяют в комплексной терапии ревматоидного артрита и токсикоза беременности. Метионин оказывает выраженное антиоксидантное действие (связывает свободные радикалы). Он также необходим для синтеза нуклеиновых кислот, коллагена и многих других белков.
Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена, йогурт и Maximol.
6. ТРЕОНИН (L-Threonine) - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме. Она важна для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров в комбинации с аспартовой кислотой и метионином. Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложению жиров в печени. Эта аминокислота стимулирует иммунитет, так как способствует продукции антител.
Треонин в незначительных количествах содержится в зернах, поэтому у вегетарианцев чаще возникает дефицит этой аминокислоты.
Пищевые источники треонина: яйца, молоко, горох, говядина, пшеница и Maximol.
7. АРГИНИН (L-Arginine) - относится к условно незаменимым аминокислотам, оказывает стимулирующее действие на выработку инсулина поджелудочной железой в качестве компонента вазопрессина (гормона гипофиза) и помогает (стимулирует) синтез гормона роста, который, в свою очередь, улучшает сопротивляемость заболеваниям. Недостаток аргинина в питании приводит к замедлению роста детей. Аргинин интенсифицирует рост у детей и подростков. Действует как предшественник оксида азота, расширяющий сосуды и усиливающий их кровенаполнение. Снижает кровяное давление, улучшает реологию крови, способствует снижению уровня холестерина в крови и препятствует тромбообразованию. Он способствует восстановлению соединительной ткани, усиливает синтез белка для роста мышц. Увеличивает мышечную массу и уменьшает массу жировой ткани. Уменьшает уровень мочевины в крови и моче, участвует в процессах сжигания жира, превращения его в энергию. L- аргинин делает человека более активным, инициативным и выносливым, привнося определенные качества в психическую энергию в поведение человека, обладает положительным психотропным эффектом.
Повышает иммунитет и замедляет рост опухолей.
Повышает потенцию и стимулирует сперматогенез.
Источниками аргинина являются: шоколад, кокосовые орехи, молочные продукты, желатин, мясо, овес, арахис, соевые бобы, грецкие орехи, белая мука, пшеница, пшеничные зародыши.
Лучшие натуральные источники Аргинина: орехи, кукуруза, желатин, шоколад, изюм, овсяная крупа, кунжут, Maximol иRenu.
8. ГИСТИДИН (L-Histidine) - незаменимая аминокислота, способствующая росту и восстановлению тканей. Главным образом необходим в период роста (от рождения до 20 лет) либо после травм (восстановление тканей). Играет важную роль в метаболизме белков, в синтезе гемоглобина, красных и белых кровяных телец, является одним из важнейших регуляторов свертывания крови.
Используется дополнительно при лечении аллергии, анемии, артрита, повышенной кислотности, язвенной болезни и сердечно-сосудистых болезней. Является антиоксидантом и противовоспалительным веществом одновременно. Гистидин входит в состав миелиновых оболочек, защищающих нервные клетки. Гистамин, очень важный компонент многих иммунологических реакций, синтезируется из гистидина. Гистамин также способствует возникновению полового возбуждения.
Природные источники гистидина: бананы, рыба, говядина, пшеница, рожь и Maximol.
9. АЛАНИН (L-Alanine) - является важным источником энергии для головного мозга и центральной нервной системы. Необходим для поддержания тонуса мышц и адекватной половой функции. Регулятор уровня сахара в крови, участвует в синтезе антител (стимулирует иммунитет). Участвует в метаболизме глюкозы. Синтезируется из разветвленных аминокислот (лейцин, изолейцин, валин). Широко распространён в живой природе. Организм стремится поддерживать постоянный уровень глюкозы в крови, поэтому падение уровня сахара и недостаток углеводов в пище приводит к тому, что белок мышц разрушается, и печень превращает полученный аланин в глюкозу. Укрепляет иммунную систему.
Понижает риск образования камней в почках. Способствует лечению гипогликемии. Может смягчать приступы эпилепсии.
Природные источники аланина: кукуруза, говядина, яйца, желатин, свинина, молоко, соя, овес и Maximol.
10. АСПАРТОВАЯ КИСЛОТА (L-Aspartic Acid) - Предотвращает физическую усталость. Укрепляет половую потенцию. Усиливает иммунитет. Защищает печень и снижает артериальное давление. Ликвидирует алкогольные последствие. АСПАРАГИН помогает защитить центральную нервную систему, т.к. помогает выводить вредный аммиак (действует как высокотоксичное вещество) из организма. Необходим для поддержания баланса в процессах, происходящих в центральной нервной системе; препятствует как чрезмерному возбуждению, так и излишнему торможению. Он участвует в процессах синтеза аминокислот в печени. Последние исследования указывают на то, что он может быть важным фактором в повышении сопротивляемости к усталости. Когда соли аспарагиновой кислоты давали атлетам, их стойкость и выносливость значительно повышались.
Больше всего аспарагина в мясных продуктах и Maximol.
11. ПРОЛИН (L-Proline) - заменимая аминокислота выполняет вспомогательные ГАМК функции торможения ЦНС, содержится в большинстве белков. Пролин стал основой для создания нейролептиков нового поколения запатентованных в России и США, которые показаны при инсультах, болезни Дауна, умственной отсталости и нарушении памяти. При помощи пролина, можно значительно повысить эффективность обучения. Является источником энергии для печени и мышц. Является важнейшим элементом при образовании коллагена.
Поддерживает нормальное состояния сухожилий суставов.
Пролинин содержится в твороге, в хрящах животных, в зернах злаков, яйцах и Maximol.
12. СЕРИН (L-Serine) - Принимает участие в образовании клеточных мембран и выработке креатина (который является частью мышечной ткани). Специальная форма серина - фосфатидилсерин - оказывает лечебный эффект при метаболических нарушениях сна и настроения. Вырабатывает «Инсулин» и снижает содержание Холестерина в крови. Укрепляет функцию печени. Снижает содержание сахара в крови. Способствует деятельности иммуносистеме.
Большое количество серина содержится в мясных и молочных продуктах, пшеничной клейковине, арахисе, соевых продуктах и Maximol.
13. ОРНИТИН (L-Ornithine) - заменимая аминокислота, улучшающая метаболизм мозга, поэтому показанием к ее применению являются программы, нацеленные на повышение интеллектуальных функций. Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Гормон роста (соматотропный гормон, соматотропин) представляет собой белок, состоящий из 191 аминокислоты. Синтез и секреция гормона роста осуществляется в передней доли гипофиза - эндокринной железе. Он выделяется передней долей гипофиза в течение дня путем пульсации, но особенно активно – после интенсивных упражнений или во время сна. Этот эффект усиливается при применении орнитина в комбинации с аргинином и карнитином. Орнитин также необходим для иммунной системы и работы печени, участвуя в дезинтоксикационных процессах и восстановлении печеночных клеток. Эта аминокислота способствует восстановлению поврежденных тканей. Орнитин в организме синтезируется из аргинина и, в свою очередь, служит предшественником для цитруллина, пролина, гпютаминовой кислоты.
14. ЦИСТЕИН (Cysteine)
Снимает токсичность, предотвращает окисления, выводит из организма продукты окисления. Стимулирует в выработке инсулина. Удаляет холестерин.
Укрепляет сопротивляемость организма. ЦИСТЕИН является составным элементом при формировании волос и кожи.
15. ГЛЮТАМИНОВАЯ КИСЛОТА (Glutamic acid)
ГЛЮТАМИНОВАЯ КИСЛОТА является элементом питания для головного мозга. Действует в обмене веществ виноградного сахара и жира. Выводит из организма Аммоний.
16. ГЛИЦИН (Glycine)
Присутствие Глицина для функции мышцы обязательно. Укрепляет функции печени, стимулирует в обмене алкоголя. Снижает содержания сахара в крови и уменьшает содержания холестерина в крови.
17. ТИРОКСИН (Thyroxine)
Тироксин обладает лечебным элементом от Старческого атеросклероза головного мозга. Улучшает кровоснабжение головного мозга. Повышает память и устраняет чувство тяжести в голове. Стимулирует функции щитовидной железы, надпочечника и гипофиза.
18. L-Тианин (L-Теанин, L-Theanine)
- Используется как средство против стресса;
- Поддерживает сердечно-сосудистую систему;
- Способствует релаксации.
Тианин - аминокислота, полученная из листьев чая, активно проникает в мозг через гематоэнцефалический барьер, превращаясь там в гамма-аминомасляную кислоту (ГАМК), оказывает психостимулирующие воздействие сходное с кофеином, в тоже время вызывая ментальную релаксацию и концентрацию.
КЛАССИФИКАЦИЯ АМИНОКИСЛОТ.
I. ФИЗИКО-ХИМИЧЕСКАЯ – основана на различиях в физико-химических свойствах аминокислот.
1) Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы, где равномерно распределена электронная плотность и нет никаких зарядов и полюсов. В их составе могут присутствовать и электроотрицательные элементы, но все они находятся в углеводородном окружении. Например, в радикале метионина сера окружена углеводородными группировками, которые не позволяют этому элементу проявлять своих электроотрицательных свойств: -(CH2)2-S-CH3. Аналогичная ситуация наблюдается, например, и в отношении азота, находящегося в составе радикала триптофана.
2) Гидрофильные незаряженные (полярные) аминокислоты. Радикалы таких аминокислот содержат в своем составе полярные группировки:
3) Отрицательно заряженные аминокислоты. Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд.
4) Положительно заряженные аминокислоты: аргинин, лизин и гистидин. Имеют дополнительную NH2-группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.
II. Биологическая классификация.
а) Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.
Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.
Частично незаменимые: аргинин, гистидин.
а) Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.
III. Химическая классификация - в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).
Белки синтезируются на рибосомах, не из свободных аминокислот, а из их соединений с транспортными РНК (т-РНК).
Этот комплекс называется «аминоацил-т-РНК».
№18 Фишером была выдвинута полипептидная теория строения белков. По этой теории молекулы белка представляют длинные цепи аминокислотных звеньев, соединенных посредством пептидных групп ( стр. Отличительные свойства некоторых белков, аминокислотный состав которых примерно одинаков, объясняется различной последовательностью соединения аминокислотных звеньев.
Классификация белков
I. Простые белки (протеины).
Альбумины — глобулярные белки. Растворимы в чистой воде и солевых растворах. Осаждаются при насыщении раствора сернокислым аммонием. Типичные представители: яичный альбумин, альбумин сыворотки крови (см. Альбумины).
Глобулины — глобулярные белки, но более высокого молекулярного веса. Растворимы в разведенных растворах солей, не растворимы в чистой воде. Осаждаются в полунасыщенном растворе сернокислого аммония. К этой группе относятся глобулины сыворотки крови, молока, эдестин конопли и ряд других животных и растительных Б. (см. Глобулины).
Проламины (глиадины) — белки семян злаков. Растворимы в 70—80% спирте и не растворимы в воде. Относительно богаты пролином и глютаминовой кислотой. Типичные представители: глиадин пшеницы, гордеин ячменя, зеин кукурузы.
Глютелины — белки злаков. Растворимы в разведенных кислотах или щелочах, но не в нейтральных растворах.
Склеропротеины (альбуминоиды, протеиноиды) — нерастворимые в воде, солевых растворах, разведенных кислотах и щелочах Б., главным образом животного происхождения, несущие структурные (чаще опорные) функции. Склеропротеины — обычно фибриллярные белки, весьма устойчивые к действию пищеварительных ферментов. К ним относятся фибриллярные Б. соединительной ткани, коллагены, содержащиеся в костях, коже, сухожилиях. Для коллагенов характерно образование при нагревании с водой желатины, которая застывает в гель при охлаждении, плавится при нагревании. Коллагены содержат много пролина и особенно оксипролина. Другую группу соединительнотканных Б. представляют эластины. К склеропротеинам относятся также кератины волос, шерсти, богатые цистином, и фиброины шелка, паутины и т. п.
Протамины — Б. основного характера, содержащиеся в сперме некоторых рыб и других животных в виде комплексов с ДНК. Имеют сравнительно небольшой мол. вес, содержат очень много аргинина и немного некоторых моноаминомонокарбоновых кислот. Иногда в их состав входят лизин и гистидин. Наиболее изучены клупеин (протамин из спермы сельди), сальмин (из спермы лосося).
Гистоны — Б. менее выраженного основного характера, богатые диаминомонокарбоновыми кислотами. Входят в состав нуклеопротеидов клеточных ядер.
II. Сложные белки (протеиды).
Нуклеопротеиды — комплексы Б. с нуклеиновыми кислотами (см.). Имеют очень высокий молекулярный вес. Играют важнейшую роль в биосинтезе Б. в организме, в передаче наследственных признаков и т. п.
Мукопротеиды — белки, содержащие мукополисахариды — углеводные группировки кислого характера (муцины, мукоиды). Содержатся главным образом в слизях, слюне, синовиальной жидкости и т. п. (см. Мукопротеиды).
Фосфопротеиды содержат фосфорную кислоту, обычно в виде сложного эфира с оксигруппой серина. Главные представители: казеин молока, вителлин яичного желтка (см. Фосфопротеиды).
Металлопротеиды — комплексы белков с металлами или органическими группировками, содержащими атомы металлов. К ним относятся многие хромопротеиды (Б., содержащие окрашенные группировки), например гемоглобин (см.) и другие пигменты крови, многие ферменты, например оксидазы, содержащие железо или медь, и др.
Липопротеиды — комплексы Б. с различными липидами. В крови играют большую роль в переносе липидов. Входят в состав клеточных оболочек и внутренних мембран клеточных структур
В механизме свертывания крови выделяют три фазы. При разрыве тканей и стенок сосудов, повреждении эритроцитов и тромбоцитов высвобождается фермент тромбопластин, который совместно с факторами свертывания крови и ионами Сa2+ способствует образованию фермента протромбиназы (фаза I). Протромбиназа превращает неактивный фермент протромбин в активный фермент тромбин (фаза II). В фазе III при участии тромбина и ионов Сa2+ происходит превращение фибриногена в фибрин.
19)Протеиды- являются сложными белками, состоящими из белковой и небелковой частей. Название протеида определяется названием его простетической группы. Так, нуклеиновые кислоты являются небелковой частью нуклеопротеидов, фосфорная кислота входит в состав фосфопротеидов, углеводы - гликопротеидов, а липиды - липопротеидов.
Классификация: Нуклепротеиды, хромопротеиды,фосфопротеиды,глюкопротеиды,липопротеиды.
Казеиноген относится к группе фосфопротеидов. Он нерастворим в воде, но легко растворяется в слабых щелочах. При кипячении казеиноген не свертывается, соли казеиногена — к а зеинаты — со щелочными и щелочноземельными металлами легко растворимы. При гидролизе казеиногена среди других аминокислот получены в значительном количестве триптофан, тирозин и метионин. Глицина совсем нет. Казеиноген молока может быть выделен в виде казеина при действии на молоко кислотами, например, уксусной, молочной, соляной и другими или же в виде соли путем насыщения молока средними солями щелочных металлов (сернокислый аммоний, хлористый натрий). При скисании молока казеиноген выпадает в виде осадка (казеин) под влиянием молочной кислоты, образующейся из молочного сахара (лактозы) в результате молочнокислого брожения. Этот же процесс происходит под влиянием сычужного фермента в присутствии солей кальция. После удаления из молока казеиногена получается молочная сыворотка, в которой содержатся молочные альбумин и глобулин, сахар и минеральные соли. Жир захватывается осадком казеина.
При производстве сыра молоко можно свертывать преимущественно сычужным ферментом и значительно реже пепсином. Сычужный фермент извлекают из желудка молодых жвачных животных. Активность ферментов в условных единицах – это количество молока в граммах, свертывающегося под действием 1гр сычужного порошка в течение 40 мин при температуре 35оС. Сычужный фермент быстро свертывает молоко при слабо-кислых р-й (рН6,6). Получение такого сгустка является одним из основных моментов производства сыра. Сычужный фермент разлагает казеин в небольшой степени. При сычужном свертывании молока наблюдается ферментативная фаза и фаза коагуляции белка под влиянием иона Са. Молекулярный вес казеина при этом не изменяется. За счет приростов в казеине щелочных групп изоэлектрическая точка будет находиться в пределах рН от 5 до 5,5. При свертывании молока и обработки сгустка внесенный сычужный фермент в основном переходит в сыворотку. Оптимальная температура сычужной свертываемости молока 40-41оС, при температуре ниже 10оС молоко сычужным ферментом не свертывается, при температуре выше 45оС длительность свертывания молока увеличивается, при температуре выше 50оС образуются лишь хлопья белка.
Глюкопротеиды, или мукопротеиды, - сложные белки, в которые входят углеводы или их производные. Обычно в состав, глюкопротеидов, кроме собственно белков, могут входить глюкоза, манноза, галактоза, гексозамины, глюкуроновая кислота и другие соединения. Типичные представители глюкопротеидов - белки, входящие в состав слюны, а также некоторых растительных слизей. Муцины составляют основу разных слизистых организма(кишечный и желудочный сок), играют защитную роль, предотвращают стенки желужка и кишечника от самопереваривания. Мукоиды-это белки синовиальной жидкости сустава,хряща,глаза. Данные белки выполняют роль смазочного материала.
20)Хромопротеиды состоят из простого белка и простетической группы, имеющей окрасу. Гемоглобин-это сложный белок ,состоит из простого глобина и красящегося гемо. В составе гемоглобина одна молекула глобина соединена с четырьмя молекулами гема.. На долю гема по массе приходится 4% молекулы гемоглобина, глобина - 96 %. У всех видов животных гем имеет одинаковое строение, в то время как глобин несколько отличается по аминокислотному составу. Гем в виде гем-порфирина является простетической группой не только гемоглобина и его производных, но и миоглобина, каталазы, пероксидазы и группы цитохромов. Гем построен из четырёх пирроловых колец и содержит двухвалентное железо. Атом двухвалентного железа образует координационные связи с четырьмя атомами азота, входящими в состав пиррольных группировок, точнее, с двумя атомами азота координационные связи, а с двумя другими – связи с замещением водорода. Оставшиеся две координационные связи используются для присоединения гема к имидазольному кольцу глобина и для связывания кислорода. Структура гема целиком расположена в одной плоскости.При потере железа гем превращается в гематопорфирин.
В эритроцитах человека содержится около 32% гемоглобина и в цельной крови в среднем 13-14% (14 г. на 100 г. крови), у мужчин — 14, у женщин — 13%. Содержание гемоглобина в 100 см3 крови лошади 13,6%, крупного рогатого скота — 11%, свиньи — 11,6%. Гемоглобин крови при гидролизе расщепляется, образуя белок глобин и красящее вещество гем красного цвета.
Основная функция гемоглобина является перенос кислорода из легких в органы и ткани организма и транспорт углекислого газа от ткани к легким. Кроме того, гемоглобин обладает буферными свойствами. Буферная система гемоглобина составляет 75% буферной ёмкости крови. Гемоглобин имеет способность связывать некоторые токсичные вещества.
21) Выделяют три группы белков мышечной ткани: миофибриллярные белки – 45 %;· саркоплазматические белки – 35 %;· белки стромы – 20 %.
I. Миофибриллярные белки.:
· миозин; при мышечного сокращения миозин выполняет две функции:
1. Сократительной — образует с молекулами актина актомиозиновий комплекс, способный выполнять механическую работу.
2. Регуляторную — регулирует расщепление АТФ посредством миозиновои АТФазы. Благодаря этому химическая энергия АТФ трансформируется в механическую работу мышц.
· актин;
· актомиозин;
а также так называемые регуляторные белки:
· тропомиозин;
· тропонин;
· a - и b-актин.
II. Саркоплазматические белки.Характеризуются растворимостью в солевых растворах с низкой ионной силой. К числу саркоплазматических белков относятся: дыхательный пигмент миоглобин, разнообразные белки-ферменты (гликолиза, дыхания и окислительного фосфорилирования, азотистого и липидного обмена) и др.
III. Белки стромы.Представлены в основном коллагеноми эластином. Белок миостромин участвует в образовании сарколеммы и линии Z. Они нерастворимы в воде, обеспечивают эластичность, прочность и избирательную проницаемость сарколеммы для ионов и других веществ. При мышечного сокращения эластин и коллаген формируют в сарколемму упругие силы, которые при расслаблении возвращают мышечную клетку к предыдущей формы и размера.
Экстрактивные вещества мышц:
· адениловые нуклеотиды (АТФ, АДФ, АМФ);
· гликоген – запасной источник энергии;
· креатин, креатинфосфат – резервный источник ресинтеза АТФ;
· свободные аминокислоты;
· карнозин, ансерин – специфические азотистые вещества; увеличивают амплитуду мышечного сокращения, сниженную утомлением;
· неорганические соли.
Белки опорных тканей. Коллаген — фибриллярный белок, составляющий основу соединительной ткани организма (сухожилие, кость, хрящ, дерма и т. п.) и обеспечивающий ее прочность и эластичность. Коллаген присутствует во всех организмах — от вирусов до многоклеточных. Коллагеновые структуры не обнаружены только у растений.
Коллаген входит в состав косметических средств для «омолаживания» кожи. В настоящее время описано 28 типов коллагена, образование которых зависит от определенных генов. Более 90 % всего коллагена высших организмов приходится на коллагены I, II,III и IV типов.
Эластин – основной белковый компонент, из которого состоят эластические волокна. Он отличается от коллагена по химическому составу и молекулярной структуре. Эластин, в отличие от других фибриллярных белков, способен растягиваться в двух направлениях.
Общими для эластина и коллагена являются большое содержание глицина и пролина.
Эластин — белок, обладающий эластичностью и позволяющий тканям восстанавливаться, например, при защемлении или порезе кожи. Эластин выполняет важные функции в артериях, легких, коже. Особенно богаты Эластин шейные связки, стенки аорты (до 40% на сухую массу); в ткани лёгких количество Эластин увеличивается с возрастом от 0,05 до 15% (на сухую массу). Эластин нерастворим в воде, разбавленных растворах солей, кислот и щелочей даже при нагревании.
Эластин и коллаген — спутники повреждений. После травм, ожогов, ранений образуются рубцы. Плотная ткань рубцов состоит в основном из этих белков. Рубцы могут появляться не только на внешних покровах, но и на внутренних органах, на месте повреждений, обусловленных различными причинами. Вот почему для устранения шрамов, рубцов, растяжек в косметологии применяют лазерные методы. Это белковые структуры, а все белки изменяются при нагревании. На этой особенности также построен метод омоложения лица световыми технологиями – фотоомоложение.
Кератины — семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину. В основном из кератинов состоят роговые производные эпидермиса кожи - такие структуры, как волосы, ногти, рога, перья и др.
Обладая механической прочностью и нерастворимостью, кератины являются одним из основных компонентов для производных элементов кожи, выполняющих защитную функцию. Значительную часть сухого веса наружного слоя кожи составляют ?-кератины.
22) Пиримидиновые основания – производные пиримидина, входящие в состав нуклеиновых кислот: урацил, тимин, цитозин.
Для оснований, содержащих группу –ОН, характерно подвижное равновесие структурных изомеров, обусловленное переносом протона от кислорода к азоту и наоборот:
Пуриновые основания — производные пурина, входящие в состав нуклеиновых кислот: аденин, гуанин.
Гуанин существует в виде двух структурных изомеров:
23) Методы исследования обмена веществ
Для изучения обмена веществ в биохимии применяют два подхода: исследования на целом организме (эксперименты in vivo) и исследования на изолированных частях организма, так называемые дезинтегрирующие методы (эксперименты in vitro). Классическим примером исследований на целом организме являются эксперименты Ф. Кноопа по изучению биологического окисления жирных кислот. На основании этих результатов Ф. Кнооп сделал вывод, что распад жирных кислот в организме происходит путем последовательного отщепления двухуглеродных фрагментов начиная с атома углерода, у которого находится карбоксильная группа. Позднее этот вывод был подтвержден и другими методами. По существу в данных исследованиях Ф. Кнооп применил метод мечения молекул: он использовал в качестве метки фенильный радикал, не подвергающийся химическим превращениям в организме.
Начиная примерно с 40-х годов XX в. нашли широкое распространение в химии и применение в биохимических исследованиях методы радиоактивного мечения молекул. Например, путем скармливания лабораторным животным различных соединений, содержащих радиоактивный углерод 14С, было установлено, что 338 холестерин синтезируется in vivo из уксусной кислоты, поскольку все атомы углерода, входящие в его молекулу, происходят из углеродных атомов ацетата. Этим же методом было доказано участие лимонной кислоты в реакциях цикла Кребса: мечением атома углерода одной из карбоксильных групп лимонной кислоты с помощью 14С было установлено, что данный изотоп участвует в образовании СО2, который получается в результате декарбоксилирования 2-оксоглутаровой кислоты.
В настоящее время с помощью радиоизотопного метода изучают время жизни белков и других структурно-функциональных компонентов клеток, т.е. скорость обновления тканей организма. В исследованиях на целом организме изучают его потребности в пищевых веществах: если отсутствие в пище какого-либо вещества приводит к нарушению физиологических функций организма, то это свидетельствует о том, что данное вещество является незаменимым пищевым фактором. Сходным образом определяются и необходимые количества пищевых веществ. При использовании дезинтегрирующих методов объектами исследования являются изолированные части организма – отдельные органы, ткани, субклеточные фракции, вплоть до очень простых биохимических систем, например таких, как система, содержащая индивидуальный фермент и его субстрат, или система, состоящая из фермента, субстрата и ингибитора. Разумеется, эти методы имеют ценность только как этап, необходимый для достижения конечной цели – понимания функционирования организма в целом. Особого пояснения требует тот факт, что результаты биохимических исследований, проведенных на животных, во многих случаях могут быть перенесены и на организм человека. В молекулярных механизмах, обеспечивающих жизнь разных организмов, населяющих Землю, имеется много схожего.
Такие фундаментальные процессы, как матричные биосинтезы, механизмы трансформации энергии, основные пути метаболических превращений и т.д. примерно одинаковы у всех организмов: от бактерий до высших животных. Поэтому многие результаты исследований, проведенных с такой, казалось бы, элементарной клеточной культурой, как E. coli, оказываются применимыми и к человеку. Подавляющую часть знаний в области биохимии человека ученые получают следующим образом: исходя из известных биохимических процессов у животных, строят гипотезу о наиболее вероятном механизме данного процесса в организме человека, а затем проверяют эту гипотезу прямыми исследованиями клеток и тканей организма. Такой подход позволяет проводить исследования на небольшом количестве биологического материала, что является одним из самых главных требований. Чаще всего в гуманных целях и с точки зрения экономичности используют ткани, удаляемые при хирургических операциях, клетки крови (эритроциты и лейкоциты), а также клетки тканей человека, выращиваемые в культуре in vitro.
Развитие методов клинической биохимии для диагностики различных заболеваний и контроля за их течением также способствует более глубокому исследованию обмена веществ и позволяет открывать новые биохимические реакции. Например, изучение наследственных нарушений, в частности врожденного дефекта фермента, позволяет открывать новые ферменты и реакции, имеющие жизненно важное значение для организма.
24)Переваривание белков.
В ротовой полости белки не перевариваются,т.к нет условий и ферментов.
Переваривание начинается в желудке. Желудочный сок содержит различные органические и неорганические в-ва. Важные: соляная к-та и белки-ферменты . Органическое в-во представлено: альбумины, глобулины,и белки-ферменты(пепсин и химозин) и белок муцин. Роль соляной к-ты:
1)Вызывает набухание белков
2)Активирует пепсиноген,превращая его в пепсин.
3)создает оптимальные условия для работы пепсина( он активен только в резко кислой среде)
4_Бактерицидное действие
Пепсин основной фермент желудочного сока,явл. Простым белком, обладает высокой ферментной активностью. Пепсин гидролизует внутр. Пептидные связи, образуя продукты пептоны.
У жвачных в молочный период для переваривания белка(молока) вырабатывается фермент химозин,кот свертывает молоко .Химозин действует только в слабо-кислой среде и только в присутствие солей кальция( сычуг) Химозин створаживает молоко путём превращения казеиногена в каземнат кальция.
Полипептиды, образовавшиеся в желудке, поступают в 12 пёрстную кишку, где подвергаются действию протеолетических ферментов. В пищеварительном соке кишечника содержится смесь секрета поджелудочной железы( трипсин, хемотрипсин, карбоксипептидазы,аминопептидазы и дипептидазы.
Все ферменты выделяются в неактивном виде. Активация ферментов происходит в полости 12 перстной кишки под действием ферменты энерокиназы кишечного сока. Сначала энтерокиназа активирует трипсиноген превращая его в трипсин. Далее полученный трипсин активирует новые порции трипсиногена.
В тонком отделе кишечника трипсин расщепляет внутр. Пептидные связи, образует продукты полипептиды, на них действуют полипептидазы, образуя дипептиды, далее на дипептиды действуют депиптедазы, образуются аминокислоты . Конечный продукт переваривания в кишечнике -а/к.
У жвачных животных желудок четырёхкамерный, состоящий из рубца, сетки, книжки и сычуга. Сычуг является железистым желудком, где вырабатывается сок, содержащий соляную кислоту, реннин и пепсин, под влиянием которых происходит желудочное переваривание белков. Впереди сычуга расположены преджелудки – рубец, сетка и книжка, в которых происходит основное превращение белков и других азотистых веществ корма. В сычуге белки расщепляются до высокомолекулярных полипептидов, которые, переходя в кишечник, гидролизуются системой протеиназ и пептидаз до свободных аминокислот. Остальная, большая часть протеина корма и низкомолекулярных органических и неорганических азотистых веществ подвергается превращению бактериями и инфузориями рубца. Растительные и животные белки, поступающие в рубец, расщепляются бактериями до пептидов, аминокислот и свободного аммиака. Одновременно с процессами расщепления в рубце происходит синтез бактериального белка за счёт размножения микробов. Простейшие в состоянии синтезировать незаменимые аминокислоты, обеспечивающие животное полноценным белком. Рубцовая микрофлора кроме белков и аминокислот способна расщеплять и небелковые азотистые вещества, которые могут поступать в рубец в различных формах и концентрациях. Из всех небелковых азотистых веществ наибольшее значение имеет мочевина или диамид угольной кислоты. Мочевина может попадать в рубец(явл эндогенным источником азота для микроорганизмов) с кормом или со слюной, куда она проникает из крови в результате обезвреживания аммиака печенью в реакциях орнитинового цикла. При недостатке азотистых веществ в корме мочевина начинает усиленно поступать в рубцовое содержимое не только со слюной, но и путём выделения стенкой рубца из крови. В содержимом рубца под влиянием бактериального фермента уреазы мочевина гидролизуется с образованием аммиака, углекислого газа и воды. Аммиак любого происхождения частично всасывается в кровь и превращается в мочевину печенью, откуда выделяется почками наружу. Другая часть аммиака используется бактериями для синтеза новых аминокислот в реакциях восстановительного аминирования кетокислот. Бактерии способны синтезировать практически все аминокислоты (заменимые и незаменимые), которые затем используются для синтеза белков собственного тела, на базе которых бактерии растут и накапливают белки за счёт минеральных источников азота.
