- •Качество изделий. Виды взаимозаменяемости.
- •Принципы нормирования. Методы нормирования.
- •Основные понятия в области нормирования точности.
- •Понятие о соединениях и посадках.
- •Принцип предпочтительности.
- •Принцип измерения при нормальных условиях.
- •Принцип ограничения предельных контуров.
- •Система допусков и посадок гладких цилиндрических поверхностей. Обозначения посадок.
- •Обозначение точности размеров.
- •Общие допуски размеров.
- •Отклонения и допуски формы поверхностей.
- •Измерения отклонений формы поверхностей деталей.
- •Измерения суммарных отклонений формы и расположения поверхностей деталей.
- •Калибры, виды и назначения. Контроль параметров макрогеометрии деталей калибрами.
- •Шероховатость поверхности, параметры.
- •Шероховатость поверхности, характеристики
- •Обозначение шероховатости на чертежах, способы нормирования числовых значений параметров шероховатости. Контроль параметров шероховатости.
- •Нормирование точности подшипников качения. Обозначения.
- •Посадки подшипников качения
- •Требования к точности поверхностей деталей, сопрягаемых с подшипниками.
- •Основные параметры метрической резьбы
- •Нормирование точности параметров метрической резьбы. Обозначение метрической резьбы.
- •Система посадок метрических резьб. Обозначение посадок метрических резьб.
- •Методы и средства контроля резьб.
- •Штифтовые соединения. Обозначение штифтов. Контроль элементов штифтового соединения.
- •Шпоночные соединения. Обозначение шпонок. Контроль элементов деталей шпоночного соединения.
- •Шлицевые соединения. Обозначения. Контроль элементов шлицевых соединений.
- •Зубчатые колеса и передачи: зависимость требований к точности от функционального назначения.
- •Обозначение точности зубчатых колес и передач. Оформление чертежей.
Принцип ограничения предельных контуров.
Принцип ограничения предельных контуров необходим для соблюдения единообразия при решении вопроса о годности детали по контролируемому параметру.
Ограничение предельных контуров фактически определяет поля допусков, что необходимо для получения однозначного заключения о годности детали по результатам ее измерительного контроля. Необходимо установить правила разбраковки деталей по результатам измерений размеров элемента в нескольких сечениях. Формальным основанием для разбраковки деталей по размерам является истолкование предельных контуров детали. Деталь признается годной в том случае, если ее реальные контуры, установленные по результатам измерений, не выходят за предельные. При этом экстремальные действительные значения могут быть равны предельным.
Принципы, обеспечивающие формирование рядов допусков, принцип формализации допусков, принцип увязки допусков с эффективными параметрами, принцип группирования эффективных параметров, принцип установления уровней относительной точности.
Принцип формализации допусков позволяет «отделить» меру допустимого рассеяния (допуск) от поля допуска, определенным образом связанного с номинальным контуром конкретной поверхности. Абстрагирование от конкретных объектов широко используется в науке и технике. Этот прием применяется и при формализации допусков в системах.
Система допусков, в которой были бы установлены массивы предельных значений для любого номинала (все стандартные поля допусков) практически не реализуема. Значительно более удобно пользоваться рядами допусков с абстрактными значениями, “оторванными” от конкретных отклонений или предельных размеров. Такие допуски определяют только допустимые рассеяния нормируемых параметров, при этом можно задавать поле допуска имеющее любое выбранное расположение относительно номинала.
Формализованные значения допусков могут быть построены в соответствии с рядами предпочтительных чисел, и быть организованы в виде рядов с различными структурами. Например, в стандарте допусков и посадок гладких цилиндрических поверхностей ряды допусков построены в виде массива, где числовое значение допуска установлено в соответствии с интервалом номинальных размеров и уровнем точности.
В системе допусков формы и расположения поверхностей приведены несколько массивов значений допусков, в том числе допуски, связанные со значениями номинальных параметров и уровнями точности, а также абстрактный ряд допусков, построенный в порядке возрастания их числовых значений.
Одно и то же формализованное значение допуска можно использовать для интервала близких номинальных параметров, вне зависимости от расположения поля допуска по отношению к нулевой линии, которая на схеме расположения полей допусков размеров представляет номинальный размер.
Принцип увязки допусков с эффективными параметрами предназначен для расчета «теоретических значений» допусков. Формальное значение допуска не является достаточно определенной мерой точности нормируемого параметра. Представляется очевидным, что допуск в 100 мкм будет сравнительно грубым для размера 10 мм и существенно более жестким для размера 80 мм.
Чтобы обеспечить нормальную работу изделия необходимо назначить допуски требуемой точности с учетом масштабного фактора. При выборе допуска размера его значение следует связывать с номинальным размером. Выбор значения допуска угла осуществляется не в соответствии со значением углового размера, а в зависимости от длины его короткой стороны. Могут встретиться и более сложные взаимосвязи. Например, значения допусков геометрических параметров резьбовых поверхностей увязывается не только с диаметрами, но и с шагами резьбы, а для зубчатых колес допуски назначают с учетом модуля и делительного диаметра колеса. Те параметры, с которыми увязывают значения допусков, будем называть эффективными.
Увязка допуска с эффективными параметрами имеет принципиальное значение, как с конструкторских, так и с технологических позиций. Конструкторский подход к посадкам с зазором (натягом) базируется на возможности увеличивать зазор (натяг) и его допустимую неопределенность (допуск посадки) с увеличением номинального размера сопряжения. Технологический подход к возможным значениям допусков основывается на увязывании допусков с полем практического рассеяния размеров при обработке детали на определенном технологическом оборудовании. Поле рассеяния размеров при обработке каждой детали в партии зависит от множества факторов, которые будут сказываться на силовых и температурных деформациях в системе станок-приспособление-инструмент-деталь. Существенное влияние на разброс размеров в партии деталей может оказывать также износ режущего инструмента.
Из-за сложности комплексного воздействия на сопряжение, как правило, нельзя выделить один или несколько влияющих факторов и “привязать” к ним значение допуска. Поэтому эффективные параметры, с которыми увязывают значения допуска, должны отражать некоторое обобщенное влияние множества конструкторских и технологических факторов. Поэтому при построении систем допусков и посадок их разработчики вынуждены увязывать допуски с некоторыми эффективными параметрами, которые с позиций функционирования изделия (конструкторский подход) учитывают масштабный фактор при назначении норм точности размеров, а с позиций изготовления деталей (технологический подход) по возможности увязаны с точностью технологических процессов.
Функциональная зависимость допуска от эффективных параметров в общем виде может быть записана следующим образом:
Т = F(Q,V,...),
где Т – допуск параметра,
F – знак функциональной зависимости,
Q, V – эффективные параметры.
Из всего множества влияющих факторов отбирают те, которые характеризуют обобщенное влияние возмущений. Именно эти факторы (их может быть несколько или один) названы эффективными параметрами. Анализ систем допусков и посадок показывает, что в большинстве случаев можно обойтись одним или двумя эффективными параметрами.
Принцип группирования значений эффективных параметров используется для сокращения номенклатуры допусков в системе.
Если допуск любого параметра рассчитывать строго по функциональной зависимости, то расчетных (“теоретических”) допусков будет столько же, сколько и номинальных значений параметров. Унификация допусков и сокращение их общей номенклатуры вполне возможны за счет объединения близких значений и использования вместо них одного стандартного допуска. Различия между “теоретическими значениями” и выбранным стандартным не должны существенно искажать установленный системой допусков и посадок характер связи между значением допуска и эффективными параметрами.
Многолетняя апробация систем допусков и посадок позволила практически решить вопрос об интервалах эффективных параметров и их “представителях”. В любой системе допусков или допусков и посадок ряды допусков образованы с учетом эффективных параметров, которые сгруппированы в интервалы. Группирование осуществляется так, чтобы значения допусков на краях интервалов умеренно отличались от “теоретических”. Границы интервалов приведены в таблицах стандартов с указаниями “до” (приведенное номинальное значение включается в данный интервал) и “свыше” (приведенное значение не входит в данный интервал, и он начинается с любого большего значения).
Интервалы эффективных параметров являются одним из “входов” в таблицу рядов допусков любого стандарта.
Принцип установления уровней относительной точности обеспечивает необходимое разнообразие допусков с сохранением возможности единообразного решения типичных задач функционирования деталей и их изготовления с учетом масштабных факторов.
Для решения различных конструкторских задач необходимы допуски разной точности. Например, точность направляющих станка или измерительного прибора существенно выше точности дверного засова; подшипники шпинделя станка точнее подшипников автомобильных колес и т.д.
Понятие точности геометрических параметров не может рассматриваться как абсолютное. Известна связь допуска со значениями эффективных параметров. Следовательно, можно говорить об установлении в любой системе допусков и посадок уровней относительной точности, которые используются для назначения “одинаково точных” допусков однотипных параметров с разными номинальными значениями.
Уровни относительной точности в различных стандартных системах допусков и посадок называются по-разному. В системе допусков и посадок гладких цилиндрических поверхностей они называются квалитетами, в системах допусков формы и расположения поверхностей, допусков зубчатых колес – степенями точности. Для подшипников качения, допусков несопрягаемых поверхностей (“неуказанные допуски”) и некоторых других случаев используют понятие классов точности. Наименование уровней относительной точности зависит от конкретных объектов и сложившихся традиций.
Установленные стандартами уровни относительной точности используются как второй вход в таблицах допусков. Первым входом являются интервалы эффективных параметров, а значение допуска отыскивают на пересечении двух входов в таблицу по принципу “строка-столбец”.
Уровни относительной точности играют весьма важную роль в использовании аналогии для выбора норм точности при проектировании или технологического оборудования при разработке технологического процесса. Вне зависимости от конкретного значения нормируемого параметра можно, опираясь на уровень относительной точности, выбрать допуск (посадку) которые обеспечат удовлетворительное выполнение требуемых функций, а по уровню относительной точности параметра изготавливаемой детали – технологическое оборудование, обеспечивающее удовлетворительное поле практического рассеяния при обработке поверхности.
На использовании уровней относительной точности построены справочники конструкторов и технологов, а также значительная часть нормативно-технических документов. Уровни относительной точности фиксируются в обозначениях допусков и посадок, за исключением тех случаев, когда приводят только значения предельных отклонений.
