- •Классификация грунтов.
- •4.Структура и текстура грунтов.
- •6.Физические свойства грунтов.
- •7.Характеристики состояния пылевато- глинистых грунтов.
- •8.Механические свойства грунтов.
- •9.Оперделение модуля деформации грунта.
- •10.Структурная прочность грунта.
- •11.Сжимаемость грунтов. Закон уплотнения.
- •12.Понятие об оптимальной плотности- влажности грунта.
- •13.Эффективные и нейтральные давления в грунтовой массе.
- •14.Водопроницаемость грунтов. Закон ламинарной фильтрации.
- •15.Сопротивление сдвигу неконсолидированных грунтов.
- •16.Сопротивление сдвигу связных грунтов.
- •17.Предельное напряженное состояние в точке.
- •18.Принцип линейной деформируемости грунтов.
- •19.Сопротивление сдвигу при трехосном сжатию Круги Мора.
- •20. Особенности физико- механических свойств структурно- неустойчивых грунтов.
- •21.Распределение напряжений в случае плоской задачи.
- •22.Определение напряжений в грунтовой толще. Действие равномерно распределенной нагрузки.
- •23.Распределение напряжений от собственного веса грунта.
- •24.Определение сжимающих напряжений по методу угловых точек.
- •28.Графический метод определения давления на подпорную стенку.
- •31.Метод послойного суммирования.
- •32.Метод линейно-деформируемого слоя.
- •33.Расчет осадки методом эквивалентного слоя.
- •34.Изменение осадок во времени.
- •35.Устойчивость откоса грунта обладающего только трением.
- •36.Устойчивость вертикального откоса обладающего только сцеплением.
- •37.Устойчивость прислоненных откосов.
- •38.Устойчивость откоса по теории предельного равновесия.
- •39.Понятие о предельном равновесии грунта. Уравнение предельного равновесия.
- •40.Понятие об активном давлении и пассвном отпоре грунта.
- •43.Основные виды нарушения устойчивости откосов.
- •44.Фазы напряженного состояния грунтов.
- •45.Критические нагрузки на грунт основания.
- •46.Деформации ползучести грунта при уплотнении.
- •47. Меры борьбы с оползнями.
10.Структурная прочность грунта.
Чаще всего грунты природного сложения уплотнены давлением вышележащих слоев. В некоторых же случаях уплотнение происходит под действием капиллярного давления, развивающегося при высыхании грунта, или вследствие понижения уровня подземных вод (снятие взвешивающего действия воды). В результате уплотнения частицы грунта сблизились и между ними образовались водно-коллоидные связи. В процессе длительного существования грунтов при определенных условиях в них дополнительно могли возникнуть хрупкие кристаллизационные связи. Суммарно эти связи придают грунту некоторую прочность, которую называют структурной прочностью грунта pstr. При давлении, меньшем структурной прочности (p<pstr), когда оно воспринимается водно-коллоидными и кристаллизационными связями, процесс уплотнения практически не развивается. Лишь после разрушения этих связей при р > pstr происходит уплотнение грунта.
Более четко начало первичного сжатия грунта выявляется при использовании компрессионной кривой, построенной в полулогарифмической системе координат. Структурная прочность грунта может быть определена также по результатам измерения бокового давления грунта при испытании его в приборе трехосного сжатия (по Е. И. Медкову) или по моменту возникновения давления в поровой воде (по Н. А. Цытовичу и М. Ю. Абелеву).
11.Сжимаемость грунтов. Закон уплотнения.
Сжимаемость грунтов – способность грунтов изменять свое строение (упаковку твердых частиц) под влиянием внешних воздействий на более компактное за счет уменьшения пористости
Для установления основных показателей сжимаемости грунтов производятся их испытания на уплотнение под нагрузкой, когда деформации грунта могут развиваться только в одном направлении и никакие другие силы, кроме внешней нагрузки, не действуют.
12.Понятие об оптимальной плотности- влажности грунта.
При устройстве искусственно улучшенных оснований, засыпке грунтом пазух фундаментов, возведении насыпей при планировке территории или прокладке дорог приходится уплотнять грунт, в т. ч. и пылевато-глинистый. Для оценки уплотняемости грунта при данной влажности его подвергают исследованию. Грунт укладывают в прибор тремя слоями, и каждый слой уплотняют 30...40 ударами стандартного груза, сбрасываемого с определенной высоты. Таким образом исследуют один и тот же грунт при различных влажностях. После уплотнения определяют плотность (объемную массу) грунта ρ и влажность ω. Затем вычисляют плотность (объемную массу) скелета грунта ρd, характеризующую его уплотненность, и строят графическую зависимость ρd—ω .
При которой стандартным уплотнением достигается наибольшая плотность скелета грунта ρd. Эта влажность называется оптимальной влажностью ωopt, так как грунт, характеризуемый такой влажностью, при одной и той же затрате энергии может быть уплотнен до наибольшей плотности скелета грунта. Наибольшее значение ρd, достигнутое в приборе стандартного уплотнения при оптимальной влажности, называется оптимальной плотностью скелета грунта ρd-opt. При устройстве искусственно улучшенных оснований и насыпей плотность скелета грунта обычно задается в долях единицы; за единицу принимается ρd-opt. Иногда для пылевато-глинистых грунтов в качестве оптимальной приближенно принимается влажность на границе раскатывания.
