Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
L12.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
237.06 Кб
Скачать

Лекция 12. Системы искусственного интеллекта. Основные понятия

План

  1. Направления использования систем искусственного ин­теллекта (ИИ): системы понимания естественного языка, распознавание образов, системы символьных вычислений, системы с нечеткой логикой, генетические алгоритмы, тео­рия игр и т.д.

  2. Математические модели и аппаратно-программная реа­лизация систем ИИ. Модель нейрона, алгоритм ее работы. Искусственные нейронные сети. Примеры применения нейронных сетей для решения экономических задач.

  3. Использование ИИ в экономике. Интеллектуальный ана­лиз данных. Управление знаниями

  1. Направления использования систем искусственного ин­теллекта (ИИ): системы понимания естественного языка, распознавание образов, системы символьных вычислений, системы с нечеткой логикой, генетические алгоритмы, тео­рия игр и т.д.

«Интеллект – совокупность всех познавательных функций индивида: от ощущений и восприятия до мышления и воображения; в более узком смысле – мышление. И. – основная форма познания человеком действительности. Существуют три разновидности в понимании функции И.: 1) способности к обучению; 2) оперирование символами; 3) способность к активному овладению закономерностей окружающей нас действительности» (Рапацевич Е.С. Словарь-справочник по научно-техническому творчеству. – Мн.: ООО «Этоним», 1995. – 384 с. – С. 51-52.). (Сл 2)

«Интеллект искусственный – 1) условное обозначение кибернетических систем и их логико-математического обеспечения, предназначенных для решения нек-рых задач, обычно требующих использования интеллектуальных способностей человека; 2) совокупность функциональных возможностей электронно-вычислительной машины (ЭВМ) решать задачи, ранее требовавшие обязательного участия человека» (Там же, с. 54). (Сл 3)

Искусственный интеллект – одна из новейших наук, появившихся в середине 60-х г.г. ХХ в. на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знаний. Искусственный интеллект – это образец междисциплинарных исследований, где соединяются профессиональные интересы специалистов разного профиля. Само название новой науки возникло в конце 60-х гг,. а в1969 г. в Вашингтоне (США) состоялась первая Всемирная конференция по искусственному интеллекту.

Когда в конце 40-х – начале 50-х гг. появились ЭВМ, стало ясно, что инженеры и математики создали не просто быстро работающее устройство для вычислений, а нечто более значительное. Оказалось, что с помощью ЭИМ можно решать различные головоломки, логические задачи, играть в шахматы, создавать игровые программы. ЭВМ стали принимать участие в творческих процессах: сочинять музыкальные мелодии, стихотворения и даже сказки (см. Машинная музыка, Синтез текстов). Появились программы для перевода с одного языка на другой, для распознавания образов, доказательства теорем. Это свидетельствовало о том, что с помощью ЭВМ и соответствующих программ можно автоматизировать такие виды человеческой деятельности, которые называются интеллектуальными и считаются доступными лишь человеку. Несмотря на большое разнообразие невычислительных программ, созданных к началу 60-хгг., программирование в сфере интеллектуальной деятельности находилось в гораздо худшем положении, чем решение расчетных задач. Причина очевидна. Программирование для задач расчетного характера опиралось на соответствующую теорию – вычислительную математику. На основе этой теории было разработано много методов решения задач. Эти методы стали основой для соответствующих программ. Ничего подобного для невычислительных задач не было. Любая программа была здесь уникальной, как произведение искусства. Опыт создания таких программ никак не обобщался, умение их создавать не формализовалось.

Никто не станет отрицать, что в отличие от искусства, у науки должны быть методы решения задач. С помощью этих методов все однотипные задачи должны решаться единообразным способом. И «набив руку» на решении задач определенного типа, легко решать новые задачи, относящиеся к тому же типу. Но именно таких методов и не смогли придумать те, кто создавал первые программы невычислительного характера.

Когда программист создавал программу для игры в шахматы, то использовал собственные знания о процессе игры. Он вкладывал их в программу, а компьютер лишь технически выполнял эту программу. Можно сказать, что компьютер «не отличал» вычислительные программы от невычислительных. Он одинаковым образом находил корни квадратного уравнения или писал стихи. В памяти компьютера не было знаний о том, что он на самом деле делает.

Об интеллекте компьютера можно было бы говорить, если бы он сам, на основании знаний о том, как протекает игра в шахматы и как играют в эту игру люди, сумел составить шахматную программу или синтезировал программу для писания несложных вальсов и маршей.

Об интеллекте компьютера можно было бы говорить, если бы он сам, на основании собственных знаний о том, как протекает игра в шахматы и как играют в эту игру люди, сумел составить шахматную программу или синтезировал программу для писания несложных вальсов и маршей.

Не сами процедуры, с помощью которых выполняется та или иная интеллектуальная деятельность, а понимание того, как их создать, как научиться новому виду интеллектуальной деятельности, - вот где скрыто то, что можно назвать интеллектом (Сл 5). Специальные метапроцедуры обучения новым видим интеллектуальной деятельности отличают человека от компьютера. Следовательно, в создании искусственного интеллекта основной задачей становится реализация машинными средствами тех метапроцедур, которые используются в интеллектуальной деятельности человека. Что это за процедуры?.

Можно сформулировать основные цели и задачи искусственного интеллекта. Объектом изучения искусственного интеллекта являются метапроцедуры, используемые при решении человеком задач, традиционно называемых интеллектуальными, или творческими. Но если психология мышления изучает эти метапроцедуры применительно к человеку, то искусственный интеллект создает программные (а сейчас уже и программно-аппаратные) модели таких метапроцедур.

Цель исследований в области искусственного интеллекта – создание арсенала метапроцедур, достаточного для того, чтобы ЭВМ (или другие технические системы, например роботы) могли находить по постановкам задач их решения. Иными словами, стали автономными программистами, способными выполнять работу профессиональных программистов – прикладников (создающих программы для решения задач в определенной предметной области). Разумеется, сформулированная цель не исчерпывает всех задач, которые ставит перед собой искусственный интеллект. Это цель ближайшая. Последующие цели связаны с попыткой проникнуть в области мышления человека, которые лежат вне сферы рационального и выразимого словесно (вербально) мышления. Ибо в поиске решения многих задач, особенно сильно отличающихся от ранее решенных, большую роль играет та сфера мышления, которую называют подсознательной, бессознательной, или интуитивной.

Основными методами, используемыми в искусственном интеллекте, являются разного рода программные модели и средства, эксперимент на ЭВМ и теоретические модели. Однако современные ЭВМ уже мало удовлетворяют специалистов по искусственному интеллекту. Они не имеют ничего общего с тем, как устроен человеческий мозг, поэтому идет интенсивный поиск новых технических структур, способных лучше решать задачи, связанные с интеллектуальными процессами. Сюда относятся исследования по нейроподобным искусственным сетям, попытки построить молекулярные машины, работы в области голографических систем и многое другое.

Существуют несколько основных проблем, изучаемых в искусственном интеллекте.

  1. Представление знаний – разработка методов и приемов для формализации и последующего ввода в память интеллектуальной системы знаний из различных проблемных областей, обобщение и классификация накопленных знаний при решении задач.

  2. Моделирование рассуждений – изучение и формализация различных схем человеческих умозаключений, используемых в процессе решения разнообразных задач, создание эффективных программ для реализации этих схем в вычислительных машинах.

  3. Диалоговые процедуры общения на естественном языке, обеспечивающие контакт между интеллектуальной системой и человеком-специалистом в процессе решения задач.

  4. Планирование целесообразной деятельности – разработка методов построения программ сложной деятельности на основании тех знаний о проблемной области, которые хранятся в интеллектуальной системе.

  5. Обучение интеллектуальных систем в процессе их деятельности, создание комплекса средств для накопления и обобщения умений и навыков, накапливаемых в таких системах.

Кроме этих проблем исследуются многие другие, составляющие тот задел, на который будут опираться специалисты на следующем витке развития теории искусственного интеллекта.

В практику человеческой деятельности интеллектуальные системы уже внедряются. Это и наиболее известные широкому кругу специалистов экспертные системы, передающие опыт более подготовленных специалистов менее подготовленным, и интеллектуальные информационные системы (например, системы машинного перевода), и интеллектуальные роботы, другие системы, имеющие полное право называться интеллектуальными. Без таких систем современный научно-технических прогресс уже невозможен.

В настоящее время ИИ – мощная ветвь информатики, имеющая как фундаментальные, чисто научные основы, так и весьма развитые технические, прикладные аспекты, связанные с созданием и эксплуатацией работоспособных образцов интеллектуальных систем. Именно от результатов этих работ зависит появление ЭВМ 5 поколения.

Любая задача, алгоритм решения которой не известен, может быть отнесена к сфере ИИ (игра в шахматы, медицинская диагностики, резюме текста, перевод на иностранный язык). Характерные черты задач ИИ – использование информации в символьной форме и наличие выбора из множества вариантов в условиях неопределенности.

ИНТЕГРАЛЬНЫЕ ОБУЧАЮЩИЕ СИСТЕМЫ (Сл 6)

Наиболее перспективным направлением развития систем компьютерного обучения является технология искусственного интеллекта (ИИ). Системы, использующие методику ИИ, называют интеллектуальными обучающими системами (ИОС). ИОС реализует адаптивное и двухстороннее взаимодействие, направленное на эффективную передачу знаний. Под адаптивностью понимается то, что система дает пояснения, подходящее каждому обучаемому, с помощью динамического управления, зависящего от процесса обучения. Двухстороннее взаимодействие – это взаимодействие со смешанной инициативой, при которой обучаемый может задать вопросы или просить систему решить задачу. ИОС отличаются друг от друга прежде всего методологиями представлений знаний о предметной области, об обучаемом и о процессе обучения.

Наиболее перспективным путем развития ИОС является, по-видимому, путь создания самообучающихся систем, приобретающих знания в диалоге с человеком. Общая архитектура системы совместного обучения человека и компьютера может определяться следующими компонентами:

-микромир;

-учащийся-человек;

-учащийся-компьютер;

-интерфейс между двумя учащимися и микромиром;

-интерфейс между двумя учащимися;

В основе разработки компьютерного «соученика» в центре внимания должно быть соотношение между управлением и коммуникацией. Прототипом такого рода системы можно считать MEMOLAB – обучающую среду с искусственным интеллектом по методологии экспериментальной психологии и человеческой памяти.

Другое направление развития систем искусственного интеллекта – распределенные системы, связывающие два и более компьютеров так, что ученики могут обучаться, сотрудничая или соревнуясь, каждый на своем компьютере. В этом случае возникает некое подобие «классного» обучения, но на совершенно ином более эффективном и интересном уровне, чем обучение в одиночку.

Недостатком многих существующих ИОС является ориентация на специальные знания в рамках определенного предмета, так что в них не предусмотрена возможность простой адаптации к другой предметной области. Более общий подход состоит в развитии интеллектуального окружения (оболочки), из которого затем можно получить много ИОС путем наполнения различным содержанием, как баз знаний. Пример такой системы – EEPS, обучающая среда для решения задач, обеспечивающая обучение решению задач в качественных областях науки.

Система реализует модель преподавания, основанную на трех режимах:

- режим вопросов (обучаемый расспрашивает компьютер с целью получения ответов на задачи и их объяснений);

- режим исследования (решение задачи совместными усилиями обучаемого с компьютером, обучаемый поставляет требуемую информацию для решения задачи);

- режим решения (обучаемый решает задачу самостоятельно, получая минимальную помощь и советы компьютера).

Система диагностики представляет стратегию решения задач студентом в виде одного из следующих стилей:

- дефектный стиль (студент, зная материал, допускает одну или более концептуальных ошибок);

- стиль «вокруг да около» (студент пытается найти решение многими неверными путями, задает много не относящихся к делу вопросов);

- рефлексивный стиль (когда студент знает материал, но решает задачу постепенно, иногда проходя через множество промежуточных этапов);

- импульсивный стиль (когда студент спешит прийти к заключению без достаточных оснований);

- смешанный стиль - комбинация двух или более перечисленных выше стилей.

Основанные на знаниях модели обучаемых могут быть построены с использованием различных видов дифференциального анализа, когнитивной диагностики.

В современных интеллектуальных обучающих системах, в основном, используются знания о качественных (количественных) аспектах процесса обучения. Мотивационные аспекты обучения можно классифицировать в соответствии с такими явлениями, как соревновательность, заинтересованность, самоконтроль, уверенность и удовлетворение.

Обучающая система должна:

- определять мотивационное состояние обучаемого

- реагировать с целью мотивации рассеянных, менее уверенных или недовольных учеников или поддержки уже мотивированных учеников.

Примеры мотивационной тактики:

- если менее уверенный ученик правильно решает задачу, система может предложить ему подобную задачу для закрепления;

- внимание рассеянных или неактивных обучаемых может быть привлечено неожиданными эффектами или вводными комментариями;

- интерес может быть повышен головоломками, вопросами или знакомством с новыми темами.

1. Распознавание образов – технические системы, воспринимающие визуальную и звуковую информацию, (кодируют и размещают ее в памяти), проблемы понимания и логического рассуждения в процессе обработки визуальной и речевой информации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]