Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы охт.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.28 Mб
Скачать

36) Низкотемпературная (криохимическая) активация

- активация системы под воздействием очень низких температур    (от –78 до –1960С). Установлено, что целый ряд реакций протекает при низких температурах с высокими скоростями.  Это связывают с участием в таких реакциях молекулярных комплексов, легко образующихся при максимально возможном сближении молекул реагентов в условиях низких температур. Иногда система активизируется за счет взаимодействия электрона с дефектами кристаллической решетки, возникающими при быстрой кристаллизации.

Этот метод активации очень селективен. В технологических процессах чаще применяют комбинированное воздействие двух факторов: низкой температуры и проникающей радиации. Чаще всего метод используют в процессах полимеризации и теломеризации.

37) Фотохимическая активация

В основе метода лежит взаимодействие вещества со светом, результатом которого является превращение световой энергии в химическую. Энергия фотонов при длине волны 760 – 200 нм равна 17- - 580 кдж/моль, что сопоставимо с энергиями связей в молекулах. Поэтому при поглощении фотонов происходит разрыв связи или ее ионизация, либо возникают возбужденные молекулы. Система при этом остается «холодной».

В промышленности реализован целый ряд фотохимических процессов, среди которых можно назвать хлорирование и сульфохлорирование предельных углеводородов, получение витамина D из эргостерона, фотонитрозирование циклогексана в производстве капролактама, некоторые процессы полимеризации и изомеризации. В качестве примера можно привести процесс получения хлорпроизводных метана, в котором первой стадией является фотохимическое инициирование распада молекулы хлора на активные радикалы:     .

Иногда при фотохимической активации процессов используют специальные вещества – фотосенсибилизаторы, которые избирательно поглощают УФ- и ИК-излучение и передают затем энергию возбуждения оптически непрозрачным реагентам. 

                                                      

В качестве источников УФ-излучения в промышленности используют ртутные лампы большой мощности (60 кВт), излучающие в области 200 – 400 нм.

Вариантом фотохимической активации является флеш-фотолиз, в котором в качестве источника излучения используют электрический разряд большой силы. В результате появляется интенсивное свечение, достаточное для возбуждения молекул.

Наиболее успешно развивается еще один метод фотохимической активации – лазерный. Лазеры – это оптические квантовые генераторы; их действие основано на квантовых переходах при поглощении фотона с образованием колебательно-возбужденных молекул.

СО2 –лазеры, излучающие в ИК-диапазоне на частоте 943 см-1, средней мощностью не более 100 Вт используют в процессах:

  • бескаталитического окисления этилена до формальдегида;

  • прямого окисления метана в формальдегид с использованием сенсибилизатора – серы.

           

При стандартном методе получения формальдегида (6000С, катализатор – оксиды азота) выход целевого продукта составляет 38%. При лазерной активации процесса β = 20%  при селективности 90%.

Основным достоинством фотохимической активации является высокая селективность процесса, так как процесс протекает при низких температурах и излучение поглощается определенным веществом в реакционной смеси или отдельным типом связи.