
ГОСы - УИТС - Теория, шпоры, вопросы, ответы / ТАУ / 28
.doc28. Аналитическое конструирование регуляторов. Постановка задачи.
При исследовании качества переходных в линейных САУ вводились разлитые интегральные критерии качества, с помощью которых оценивался переходной процесс на бесконечном интервале времени. При рассмотрении интегральных критериев качества мы убедились в том, что эти критерии позволяют определить параметры регулятора, если задана его структура. Можно поставить более общую задачу: найти закон регулирования - аналитическую функцию, связывающую управляющую координату и управляющее воздействие при этом доставляющее min интегральному критерию качества. Такое оптимальное конструирование дифференциального уравнения регулятора получило название аналитического конструирования регуляторов. По методам решения и постановке задачи эта задача сродни задачам оптимального регулирования.
Это вариационная задача, где в качестве экстремали ищется функция связывающая Х и U.
При аналитическом конструировании задача состоит в том, что бы найти закон регулирования который с учетом уравнений объекта и граничных условий доставлял бы min интегралу, характеризующему квадратичную ошибку системы и гарантирующему ее устойчивость.
Постановка задачи оптимального конструирования регуляторов.
Объект регулирования задан с помощью дифуравнений, что в операторной форме соответствует заданию передаточной функции Wор(S) (или W(S))
Считают
что на систему не действуют внешние
возмущения, а переходной процесс
происходит при изменении начальных
условий.
X0
= { x1(0),
x2(0)…
xn(0)};
U(0)
= {U(0),
U(0)}
(1)
X
= y0
– y
- рассогласование
В устойчивой линейной САУ в результате переходного процесса все функции координат должны стремиться к 0. х1() = х2() = … хn() = U() = 0 (2)
В
качестве критерия оптимальности выберем
интеграл вида
(3), где V- положительно определённая квадратичная форма.
(4)
Т.е.
если подставить V
в
(3) то это будет
квадратичная ошибка системы.
Член U2 в (4) характеризует стоимость процесса управления, т.е. затраты энергии на нагрев. U2 гарантирует отсутствие нереализуемых в линейных регуляторах законов, он гарантирует отсутствие управляющих воздействий, при которых скорость превращается в бесконечность.
Само
существование
(3) гарантирует
устойчивость системы. При аналитическом
конструирование задание состоит в том
чтобы найти в аналитической форме
функцию Ф(U,U,x1…xk)
= 0 (5) – который с учётом уравнений
объекта и приграничных условий (1) и (2)
доставлял бы минимум интегралу (3).