- •1 Завдання
- •2 Завдання
- •3 Завдання
- •4 Завдання
- •5 Завдання
- •6 Завдання
- •7 Завдання
- •8 Завдання
- •9 Завдання
- •10 Завдання
- •11 Завдання
- •12 Завдання
- •13 Завдання
- •14 Завдання
- •15 Завдання
- •16 Завдання
- •17 Завдання
- •18 Завдання
- •19 Завдання
- •20 Завдання
- •21 Завдання
- •22 Завдання
- •23 Завдання
- •24 Завдання
- •25 Завдання
- •26 Завдання
- •27 Завдання
- •28 Завдання
- •29 Завдання
- •30 Завдання
- •31 Завдання
- •32 Завдання
- •33 Завдання
- •34 Завдання
- •39 Завдання
- •40 Завдання
- •41 Завдання
- •42 Завдання
- •43 Завдання
- •44 Завдання
- •45 Завдання
- •46 Завдання
- •47 Завдання
- •48 Завдання
- •49 Завдання
- •50 Завдання
- •51 Завдання
- •52 Завдання
- •53 Завдання
- •54 Завдання
- •55 Завдання
- •56 Завдання
- •57 Завдання
- •58 Завдання
- •59 Завдання
- •60 Завдання
- •61 Завдання
- •62 Завдання
- •63 Завдання
- •64 Завдання
- •65 Завдання
- •66 Завдання
- •67 Завдання
- •68 Завдання
- •69 Завдання
- •70 Завдання
39 Завдання
Електричний струм в металах – це електричний струм, який обумовлений упорядкованим рухом вільних електронів. ρ= 10-8 до 10-6 Ом*м.
Основне уявлення класичної електронної теорії - існування в металах вільних електронів, рух яких зумовлює явище електричного струму. Опір металів пояснюється зіткненнями електронів провідності з іонами кристалічної решітки. При цьому, очевидно, чим частіше відбуваються такі зіткнення, тобто чим менше середній час вільного пробігу електрона між зіткненнями, тим більше питомий опір металу.
40 Завдання
Електричний струм у вакуумі – це електричний струм, який обумовлений упорядкованим рухом електронів емісії. Явище, яке обумовлене ви літом вільних електронів з поверхні металів називається емісією. Умова емісії: Ек≥Ав. Ав=U*1.6*10-19Кл. Ав – робота виходу.
Електронно-променева трубка складається з катода, анода, вирівнювального циліндру, екрану, регуляторів площини та висоти.
Під дією фото- або термоемісії з металу катода (тонка провідникова спіраль) вибиваються електрони. Оскільки між анодом та катодом підтримується напруга у декілька кіловольт, то ці електрони, вирівнюючись циліндром, рухаються у напрямку аноду (пустотілий циліндр). Пролітаючи крізь анод електрони потрапляють до регуляторів площини. Кожен регулятор — це дві металеві пластини, різнойменно заряджені. Якщо ліву пластину зарядити негативно, а праву позитивно, то електрони проходячи крізь них будуть відхилятися праворуч, і навпаки. Аналогічно діють і регулятори висоти. Якщо ж на ці пластини подати змінний струм, то можна буде контролювати потік електронів як у горизонтальній, так і вертикальній площинах. У кінці свого шляху потік електронів потрапляє на екран, де може викликати зображення.
41 Завдання
Електричний струм в електролітах – це електричний струм, який обумовлений упорядкованим рухом позитивних і негативних іонів. Електроліти – це рідини, які проводять електричний струм, тобто розчини солей, лугів, кислот.
Електроліз – явище виділення речовини на електроді при проходженні електричного струму крізь електроліт.
Електроліз широко застосовують у промисловості. Електролізом одержують найбільш активні метали (К, Na, Ca, Mg, Al) і найбільш активні неметали (фтор і хлор). Електроліз також використовують для синтезу деяких складних речовин — їдкого натрію (NaOH), їдкого калію (KOH), бертолетової солі (KClO3).
Електроліз також використовують для покриття поверхні металевих виробів шаром більш стійкого металу з метою захисту від корозії, наприклад цинкування, хромування, нікелювання. Шляхом електролізу метали можна очищувати від домішок.
Електроліз застосовують у гальванотехніці ― електролітичному осадженні металів на поверхню металевих і неметалевих виробів. Це дозволяє знімати з різних предметів точні копії, які легко відокремити від оригіналу. Такий метод репродукування називають гальванопластикою.
42 Завдання
Явище проходження електричного струму крізь газ називається газовим розрядом. Самостійний розряд – розряд, який продовжується після припинення дії іонізатора.
Несамостійний розряд – газовий розряд, який відбувається під дією іонізатора.
Плазма у фізиці — стан речовини, в якому її атоми іонізовані, тобто електрони відірвані від ядер. Завдяки цьому речовина стає не тільки електропровідною, але й надзвичайно чутливою до електромагнітних полів. Плазму називають четвертим агрегатним станом речовини на відміну від твердого, рідкого та газоподібного. Будь-яка речовина за умови досягнення її частинками енергій, достатніх для термоядерних реакцій, переходить до стану плазми. У зв'язку з перспективним використанням плазми в ядерному синтезі важливе значення має проблема її утримання в обмеженому об'ємі за допомогою зовнішнього магнітного поля.
Плазму застосовують також у термоелектронних і магнетоплазмодинамічних (МПД) генераторах — перетворювачах тепла безпосередньо на електричну енергію (минаючи перетворення в механічну).
