- •Введение
- •Жидкость. Основные понятия
- •Физические свойства жидкости
- •Поверхностное натяжение. Капиллярные явления
- •Неньютоновские жидкости. Основные понятия
- •1 Гидростатика
- •Силы, действующие в жидкости. Гидростатическое давление и его свойства
- •1.2 Дифференциальные уравнения равновесия жидкости (уравнения Эйлера)
- •1.3 Основное уравнение гидростатики
- •1.4 Виды гидростатического давления. Приборы для измерения давления
- •А) пьезометр
- •Б) манометр
- •В) дифференциальный манометр
- •1.5 Эпюры гидростатического давления
- •1.6 Сила давления на плоскую стенку. Положение центра давления
- •1.7 Сила давления на криволинейные поверхности
- •1.8 Относительный покой жидкости
- •1.9 Плавание тел. Закон Архимеда
- •Контрольные вопросы
- •2 Гидростатика
- •2.1 Методы исследования движения жидкости
- •2.2 Основные понятия и определения гидродинамики
- •2.3 Уравнение постоянства расхода (уравнение неразрывности)
- •2.4 Дифференциальные уравнения Эйлера. Уравнения Бернулли для струйки и потока идеальной жидкости
- •2.5 Уравнения Бернулли для струйки и потока реальной жидкости
- •Контрольные вопросы
- •3 Гидравлические сопротивления
- •3.1 Режимы движения жидкости
- •3.2 Особенности течения при ламинарном режиме
- •3.3 Особенности течения при турбулентном режиме
- •3.4 Понятие о гладких и шероховатых трубах
- •3.5 Общие понятия о потерях напора
- •3.6 Влияние различных факторов на коэффициент
- •3.7 Формулы для определения коэффициента Дарси
- •Контрольные вопросы
- •4 Основы расчета трубопроводных систем
- •4.1 Классификация трубопроводов
- •4.2 Основные формулы при расчете трубопроводов
- •4.3 Основные задачи при расчете и проектировании трубопроводов
- •4.4 Расчет простого гидравлически короткого трубопровода
- •4.5 Особые случаи короткого трубопровода
- •4.6 Расчет сложного трубопровода
- •4.7 Понятие об экономически наивыгоднейшем диаметре
- •Контрольные вопросы
- •5 Неустановившееся движение жидкости
- •5.1 Гидравлический удар в трубопроводе
- •5.2 Использование гидравлического удара
- •Контрольные вопросы
- •6 Истечение жидкости через отверстия и насадки
- •6.1 Классификация отверстий и насадков
- •6.2 Истечение через малые отверстия в тонкой стенке
- •6.3 Истечение через насадки
- •6.4 Структура потока в различных насадках
- •6.5 Истечение при переменном напоре
- •6.6 Выравнивание уровней в сообщающихся сосудах
- •Контрольные вопросы
4.5 Особые случаи короткого трубопровода
Истечение трубопровода под уровень.
В этом случае уравнение Бернулли будет иметь несколько иной вид.
Выбираем плоскость сравнения 0-0 таким образом, что все сечения трубопровода лежат на плоскости. Выбираем расчетные сечения:
1-1 - по свободной поверхности жидкости в напорном резервуаре,
2-2 - по свободной поверхности жидкости в приемном резервуаре.
Запишем исходный вид уравнения Бернулли:
z1 + P1/γ+α1V21 /2g=z2+P2/γ +α2V22/2g+∑h1-2.
В сечениях 1-1 и 2-2 известны следующие величины (cм. рис. 50):
Z1=H1, P1=Pатм, V1=0, (так как приток и отток из резервуара равны между собой), Z2=H2, P2=Ратм, V2=0.
Таким образом, после подстановки указанных величин в исходное уравнение, получим конечный вид уравнения Бернулли для случая, представленного на рисунке 50:
H1+ Pатм./γ= H2+ Pатм./γ+∑h1-2,
H1=H2+∑h1-2.
В уравнении пока неизвестны потери напора (∑h1-2). Они рассчитываются аналогично потерям в простом гидравлически коротком трубопроводе.
Рисунок
50 - Трубопровод с истечением под уровень.
Сифонный трубопровод.
Сифонным трубопроводом (сифоном) называют самотечную трубу, часть которой расположена выше горизонта жидкости в сосуде, который ее питает (рис. 51).
Ограничимся рассмотрением истечения из сифона под уровень. Для действия сифона из него необходимо предварительно удалить воздух и создать в нем первоначальное разрежение. После заполнения его жидкостью начнется движение из верхнего сосуда в нижний. Движение происходит под действием разности уровней.
Рисунок 51 - Сифонный трубопровод.
В том, что жидкость в такой трубе будет двигаться, можно убедиться из следующего. Наметим сечение трубы n-n и обозначим превышение его над горизонтом жидкости: в левом сосуде – через h1, в правом сосуде – через h2.
Если предположить, что жидкость, заполняющая сифон, находится в покое, то можно написать:
- давление в сечении n-n с левой стороны p1= pатм – h1γ
- давление в сечении n-n с правой стороны p2=pатм – h2γ
Как видно, p1> p2 (т.к. h1 < h2); отсюда понятно, что жидкость в трубе не может находиться в покое: она будет двигаться слева направо, т.е. в сторону меньшего давления.
Характерным для сифона является то, что в нем имеет место вакуум. Наибольшая величина вакуума будет в сечении, наиболее высоко расположенном, т.е. в сечении n-n.
Найдем максимальную величину вакуума (hвак)max в сифоне. С этой целью наметим по линии n-n, где ищем вакуум, сечение 2-2 и составим уравнение Бернулли для сечения 1-1 (проходящим по уровню жидкости в питающем сосуде) и 2-2. Плоскость сравнения 0-0 расположим также по уровню жидкости в левом сосуде.
Тогда общий вид уравнения можно преобразовать следующим образом:
z1+ P1/ γ + α1V12/2g=z2+P2/γ+α2V22/2g + ∑h1-2.
z1=0; P1/γ=Pатм/γ; α1V12/2g=0; V1≈0
z2=h1; P2/γ=Pn/γ; α2V22/2g=αV2/2g;
где: V- скорость в трубе; pn- давление в сечении n-n.
Pатм/γ=h1+Pn/γ+αV2/2g+∑h1-n
Потери напора можно определить по обычной формуле:
∑h1-n=ζ!×V2/2g,
где: ζ!= (ζ+λ L/d) – общий коэффициент сопротивления системы.
После преобразования получим следующий вид уравнения:
Pатм/γ-Pn/γ=h1+αV2/2g+(ζ+λL/d)V2/2g.
Но Pатм/γ-Pn/γ=(hвак)макс,
Тогда (hвак)макс = h1+αV2/2g+(ζ+λL/d)V2/2g.
По этой формуле можно рассчитывать вакуум в любом сечении трубы, но (hвак)макс должен быть меньше допускаемого (hвак)доп, в противном случае может возникнуть кавитация. Обычно (hвак)доп = 6-7 м. вод. ст.
