- •1 Общая функциональня схема
- •2 Структура комплекса асутп.
- •2 Структура комплекса асутп.
- •3 Характеристики элементов регулирования и управления.
- •5 Унификация средств автоматизации и управления
- •6 Исполнительные механизмы и регулирующие органы
- •7 Исполнительный механизмы. Классификация.
- •8 Исполнительные механизмы. Гидравлические им
- •9 Исполнительные механизмы. Пневматические им
- •10 Исполнительные механизмы. Электродвигательные им. Электромагнитные им.
- •11 Регулирующие органы
- •12 Регулирующие органы. Регулирующие органы скоростного типа
- •13 Регулирующие органы. Регулирующие органы дроссельного типа
- •14 Управляющие устройства. Понятие регулирования и управления
- •Понятие об управлении и регулировании
- •15 Пропорционально интегрально дифференциальный регулятор
- •16 Программируемые логические контроллеры
- •17 Устройства межсетевого интерфейса
- •18 Основные сетевые топологии
- •19 Промышленные сети
- •Достоинства[править | править вики-текст]
- •Недостатки[
5 Унификация средств автоматизации и управления
Унификация – сопутствующий агрегатированию метод стандартизации, также направленный на упорядочение и разумное сокращение состава серийно изготовляемых средств автоматизации. Она направлена на ограничение многообразия параметров и технических характеристик, принципов действия и схем, а также конструктивных особенностей исполнения средств автоматизации.
Сигналы – носители информации в средствах автоматизации могут различаться как по физической природе и параметрам, так и по форме представления информации. В рамках ГСП применяются в серийном производстве средств автоматизации следующие типы сигналов:
- электрический сигнал (напряжение, сила или частота электрического тока);
- пневматический сигнал (давление сжатого воздуха);
- гидравлический сигнал (давление или перепад давлений жидкости).
Соответственно в рамках ГСП формируются электрическая, пневматическая и гидравлическая ветви средств автоматизации.
Наиболее развитой ветвью средств автоматизации является электрическая. Развитие пневматической ветви ограничивается относительно низкой скоростью преобразования и передачи пневматических сигналов. В области автоматизации пожаро- и взрывоопасных производств пневматические средства находились долгое время вне конкуренции. Гидравлическая ветвь средств ГСП не получила широкого развития.
По форме представления информации сигнал может быть аналоговым, импульсным и кодовым.
Аналоговый сигнал характеризуется текущими изменениями какого–либо физического параметра–носителя (например, мгновенными значениями электрического напряжения или тока). Такой сигнал существует практически в каждый данный момент времени и может принимать любые значения в пределах заданного диапазона изменений параметра.
Импульсный сигнал характерен представлением информации только в дискретные моменты времени, т.е. наличием квантования по времени. При этом информация представляется в виде последовательности импульсов одинаковой продолжительности, но различной амплитуды (амплитудно-импульсная модуляция сигнала) или одинаковой амплитуды, но разной продолжительности (широтно-импульсная модуляция сигнала). Амплитудно-импульсная модуляция (АИМ) сигнала применяется в тех случаях, когда значения физического параметра–носителя информации могут изменяться со временем. Широтно-импульсная модуляция (ШИМ) сигнала используется, если физический параметр–носитель информации может принимать лишь некоторое постоянное значение.
4 Программно-технические комплексы
Программно-технические комплексы представляют собой совокупность микропроцессорных средств автоматизации (микропроцессорных контроллеров, устройств связи с объектом УСО), дисплейных пультов оператора и серверов различного назначения, промышленных сетей, которые позволяют связать перечисленные компоненты, программного обеспечения контроллеров и дисплейных пультов оператора. ПТК предназначены, в первую очередь, для создания распределенных систем управления технологическими процессами различной информационной мощности (от десятков входных/выходных сигналов до сотни тысяч) в самых разных отраслях промышленности. ПТК серийно начали производить в конце 1970-х годов ряд зарубежных фирм (Honeywell, Foxboro, Yokogawa и др.). В 1980 – 1990-х гг. появились ПТК отечественного производства (ПТК «Период», ПТК-ТЛС, ПТК РСУ, МП-8000М, МК-8000) [3]. Широкому распространению ПТК в значительной мере способствовали улучшение элементной базы для создания малогабаритных и быстродействующих микроконтроллеров, повышение надежности управляющих вычислительных сетей, разработка эффективного программного обеспечения для промышленных контроллеров и операторских станций. В настоящее время на российском рынке нашли распространение свыше сотни ПТК отечественного и зарубежного производства. Среди отечественных выгодно выделяются ПТК Квинт, Саргон, КРУГ, Круиз, Дирижер, Техноконт, Деконт. Закладываемые при разработке ПТК принципы типизации, унификации и агрегатирования [4] позволяют добиться полной совместимости всех элементов комплекса, включая контроллеры, УСО, дисплейные пульты оператора, интерфейсы и протоколы сетевого обмена и др. Такой подход позволяет существенно снизить время на проектирование и монтаж АСУ ТП, проведение пуско-наладочных работ.
