Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.4 Mб
Скачать

6.2 Диод

Диод представляет собой простейшую форму полупроводникового прибора. Полупроводники используются в электронных схемах для контроля потока электронов.

Электронно-дырочный переход не получают простым соприкосновением двух разнотипных полупроводниковых брусков, так как в месте их соприкосновения не исключено наличие жировых пятен, пыли, чрезвычайно трудноудаляемой воздушной прослойки и прочего. А вместо этого электронно-дырочные переходы создают по специальным технологиям: диффузии, сплавления, эпитаксии, ионного легирования и ионной имплантации и многим другим.

Диод имеет два вывода и служит своеобразным клапаном, пропускающим электроны лишь в одном направлении; в противоположном они пройти не могут. Рассмотренный идеальный электронно-дырочный переход в прямом включении пропускает электрический ток, а в обратном включении не пропускает, т.е. обладает односторонней проводимостью.

Диоды используются в массе различных схем, и их можно разделить на несколько типов. Вот список наиболее широко применяемых диодов.

-Зенеровский диод (стабилитрон). Ограничивает напряжение до определенного уровня. На таком диоде можно дешево и удобно построить регулятор напряжения для вашей схемы.

-Светоизлучающий диод (светодиод, или СИД). Все полупроводники излучают кванты света, если через них протекает ток. Светодиоды излучают этот свет в видимом диапазоне спектра. В настоящее время можно найти светодиоды всех без исключения цветов радуги.

-Кремниевый управляемый диод (тиристор). Тиристор представляет собой своеобразный ключ, используемый для контроля переменного или постоянного тока. Такие элементы широко применяют в реостатах для регулирования освещения.

-Выпрямительный диод. Этот основной тип диода преобразовывает (или выпрямляет) переменный ток в постоянный. Запомните: переменный ток постоянно пульсирует между плюсом и минусом, а постоянный ток стабилен и может быть постоянно либо положительным, либо отрицательным.

Рисунок 10 - Виды корпусов распространенных типов диодов. Диоды большего размера, как правило, используются в приложениях с большими значениями рабочих токов и напряжений

6.3 Эффекты полупроводников

6.3.1 Эффект Ганна

Эффект Ганна, на принципе которого строят диоды Ганна, был открыт в 1963 году американцем Джоном Ганном. Диод Ганна не обладает электронно-дырочным переходом, а состоит из пластины электронного типа проводимости, выполненной из фосфида индия, арсенида галлия, антимонида галлия и др., к противоположным граням которой подсоединены электроды. Толщина полупроводниковой пластинки составляет от сотен нанометров до сотен микрометров. Концентрация донорных примесей, которые вносят в полупроводник, составляет обычно 1015 см–3. Удельное сопротивление не одинаково по протяжённости полупроводника, а максимальная концентрация примеси сформирована у граней пластины, к которым подсоединены контакты. Полупроводниковую пластину обычно выполняют неравномерного сечения сложной конфигурации, создавая на ней выступы и впадины. Работа и параметры диода Ганна напрямую зависят от распределения примесей в полупроводнике и его формы.

Для изучения эффекта Ганна обратим внимание на рисунок 11, на котором представлена зависимость проводимости полупроводника i от напряжённости электрического поля E.

Рисунок 11 – Вольт - амперная характеристика диода Ганна

Подадим напряжение от внешнего источника питания к граням полупроводника, предназначенным для этого. Пока напряжённость поля будет мала, концентрация носителей зарядов от неё зависеть не станет, что отражено на рисунке линейным нарастанием проводимости полупроводника на участке от начала координат до точки A. Последующее повышение напряжённости поля приводит к замедлению роста проводимости полупроводника, и в точке B, соответствующей критической напряжённости поля, она перестанет повышаться.

Дальнейшее увеличение напряжённости поля вызывает повышенную интенсивность ударов электронов об атомы кристаллической решётки полупроводника, что приводит к уменьшению его дифференциальной проводимости на участке от B до C. Участок отрицательного дифференциального сопротивления имеет место лишь для переменных токов и напряжений. При увеличении напряжённости поля в связи с тем, что удельное сопротивление в объёме полупроводника несколько различно и волновые возмущения не постоянны, электроны с малой эффективной массой, называемые «быстрыми», отталкиваемые электрическим полем, начнут формировать и заполнять собой участок в сечении полупроводниковой пластины.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]