- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Эффекты полупроводников
- •6.3.1 Эффект Ганна
- •6.3.2 Эффекты Пельтье и Зеебека
- •6.3.3 Туннельный эффект
- •6.3.4 Эффект Холла
- •6.4 Общие сведения о полупроводниковых диодах
- •6.5 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.6 Разновидности диодов
- •6.6.1 Выпрямительные диоды
- •6.6.2 Импульсные диоды
- •6.6.3 Варикапы
- •6.6.4 Стабилитроны и стабисторы
- •6.6.5 Светодиоды
- •6.6.6 Полупроводниковые лазеры
- •6.6.7 Фотодиоды
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •7 Интегральные микросхемы
- •7.1 Плёночные микросхемы
- •7.2 Гибридные интегральные микросхемы
- •7.3 Полупроводниковые микросхемы
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Органические светодиодные дисплеи
- •8.8 Дисплеи на углеродных нанотрубках
- •8.9 Сенсорные экраны и классификация их типов
- •8.10 Голографические системы
- •9.Конструирование радиоэлектронные устройств
- •9.1 Изготовление печатных плат
- •9.2 Монтаж компонентов на печатной плате
- •9.2.1 Шелкография или маркировка.
- •9.2.2 Монтаж компонентов
- •10 Простейшие схемы электроники
- •10.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •10.2 Генераторы
- •10.3 Дискретные устройства
- •Список литературы
10.1 Усилители электрических сигналов
Усилитель электрических сигналов - это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подведенного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямоугольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, определяющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону сохранения энергии усилительное устройство должно включать в себя источник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рисунке 10.1.
Рисунок 10.1 - Обобщенная структурная схема усилителя
Электрические колебания поступают от источника сигнала на вход усилителя, к выходу которого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро - необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Рвх, выходная мощность Рвых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Рвх < Рвых < Ро. Следовательно, усилитель - это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала.
Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполярных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС), варикапов и других.
Простейший усилитель содержит один усилительный элемент. В большинстве случаев одного элемента недостаточно и в усилителе применяют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадом.
Усилитель состоит из активных и пассивных элементов: к активным элементам относятся транзисторы, микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляющего сигнала на входных электродах. Пассивными элементами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необходимый размах колебаний, фазовые сдвиги и другие параметры усиления. Таким образом, каждый каскад усилителя состоит из минимально необходимого набора активных и пассивных элементов.
Структурная схема типичного многокаскадного усилителя приведена на рисунке 10.2.
Рисунок 10.2 - Схема многокаскадного усилителя
Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощности (выходного каскада). Количество каскадов предварительного усиления определяется необходимым усилением. Входной каскад обеспечивает, при необходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.
Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.
Источниками усиливаемых сигналов могут быть микрофоны, считывающие головки магнитных накопителей информации, различные преобразователи неэлектрических параметров в электрические.
Нагрузкой являются громкоговорители, электрические двигатели, сигнальные лампы, нагреватели и т. д. Источники питания вырабатывают энергию с заданными параметрами — номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анодных цепях ламп; используется для поддержания заданных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.
