- •Введение. Немного теории
- •1 Источники напряжения
- •2 Электрические компоненты
- •3 Величины, применяемые при работе с электричеством. Законы Ома и Кирхгофа
- •4 Новые понятия
- •5 Пассивные компоненты электронных схем
- •5.1 Резисторы
- •5.2 Конденсаторы
- •5.3 Катушки индуктивности и дроссели
- •5.4 Трансформаторы и пьезотрансформаторы
- •6 Активные компоненты (полупроводники)
- •6.1 Диэлектрики, проводники, сверхпроводники и полупроводники
- •6.1.1 Диапазоны энергий и распределение носителей заряда в них
- •6.2 Диод
- •6.3 Эффекты полупроводников
- •6.3.1 Эффект Ганна
- •6.3.2 Эффекты Пельтье и Зеебека
- •6.3.3 Туннельный эффект
- •6.3.4 Эффект Холла
- •6.4 Общие сведения о полупроводниковых диодах
- •6.5 Конструкции и простейшие способы изготовления полупроводниковых диодов
- •6.6 Разновидности диодов
- •6.6.1 Выпрямительные диоды
- •6.6.2 Импульсные диоды
- •6.6.3 Варикапы
- •6.6.4 Стабилитроны и стабисторы
- •6.6.5 Светодиоды
- •6.6.6 Полупроводниковые лазеры
- •6.6.7 Фотодиоды
- •6.7 Биполярные транзисторы
- •6.7.1 Общие сведения о транзисторах
- •6.7.2 Конструкция некоторых биполярных транзисторов
- •6.7.3 Принцип действия биполярных транзисторов
- •6.7.4 Схемы включения биполярных транзисторов
- •6.7.5 Биполярные фототранзисторы
- •6.8 Полевые транзисторы с управляющим переходом
- •6.8.1 Конструкция полевых транзисторов с управляющим переходом
- •6.8.2 Полевые транзисторы с изолированным затвором
- •6.8 Биполярные транзисторы с изолированными затворами
- •6.8.1 Общие сведения о бтиз
- •6.8.2 Конструкция и принцип действия бтиз
- •6.9 Тиристоры
- •6.9.1 Общая информация о тиристорах
- •6.9.2. Динисторы
- •6.9.3 Тринисторы
- •6.9.4 Запираемые тиристоры
- •6.9.5 Симисторы
- •7 Интегральные микросхемы
- •7.1 Плёночные микросхемы
- •7.2 Гибридные интегральные микросхемы
- •7.3 Полупроводниковые микросхемы
- •8 Устройства отображения информации
- •8.1 Индикаторы
- •8.2 Светодиодные индикаторы
- •8.3 Жидкокристаллические индикаторы
- •8.4 Общие сведения об электронно-лучевых трубках
- •8.5 Жидкокристаллические дисплеи и панели
- •8.5.1 Общие сведения о жидкокристаллических дисплеях
- •8.5.2 Электролюминесцентная подсветка жидкокристаллических дисплеев
- •8.5 3 Светодиодная подсветка жидкокристаллических дисплеев
- •8.5.4 Время отклика жидкокристаллических дисплеев и влияние температуры на их работу
- •8.6 Плазменные панели
- •8.7 Органические светодиодные дисплеи
- •8.8 Дисплеи на углеродных нанотрубках
- •8.9 Сенсорные экраны и классификация их типов
- •8.10 Голографические системы
- •9.Конструирование радиоэлектронные устройств
- •9.1 Изготовление печатных плат
- •9.2 Монтаж компонентов на печатной плате
- •9.2.1 Шелкография или маркировка.
- •9.2.2 Монтаж компонентов
- •10 Простейшие схемы электроники
- •10.1 Усилители электрических сигналов
- •Классификация усилительных устройств.
- •10.2 Генераторы
- •10.3 Дискретные устройства
- •Список литературы
2 Электрические компоненты
Электрические компоненты, или, как их еще называют, радиоэлементы, могут служить для того, чтобы контролировать электричество. Например, ключ с помощью проводников соединяет электрическую лампочку с источником тока. Для того, чтобы разъединить их и, таким образом, выключить лампочку, нужно просто переместить ключ, создав разрыв цепи. К пассивным компонентам относятся так же резисторы, конденсаторы.
Другие элементы, служащие для контроля электричества и называемые активными: диоды, транзисторы, микросхемы.
Интегральные микросхемы (ИМС, или просто — ИС) представляют собой компоненты, содержащие целую группу миниатюрных компонентов (резисторов, транзисторов, диодов в одном корпусе, который ненамного больше по размерам, чем один обычный радиоэлемент. Благодаря тому, что каждая ИС включает множество других компонентов, она одна может делать ту же работу, что и сразу несколько индивидуальных элементов.
Отличие пассивных компонентов от активных
Транзисторы, диоды, светоизлучающие диоды (СИД), интегральные схемы и другие электронные устройства состоят из полупроводников, а не проводников.
Полупроводником называется материал, такой как кремний или германий, свойства которого имеют общие черты как с проводниками, так и с изоляторами. Полупроводники в свободном состоянии проводят ток очень слабо, но при добавлении других веществ, например бора и фосфора, становятся несколько лучшими проводниками. Если добавляется фосфор, то кремний принимает фирму полупроводника так называемого n-типа, если же используется бор, то он становится полупроводником р-типа. Полупроводник n-типа имеет больше электронов, чем обычный полупроводник, а полупроводник р-типа, соответственно, меньше.
Когда области полупроводника, содержащие бор и фосфор, располагался рядом друг с другом (вплавляются друг в друга), получается так называемый p-n-переход. В таком переходе ток течет только в одном направлении. Диоды - элементы, которые служат для преобразования переменного тока в постоянный с помощью отсечения тока, проходящего в одном направлении - как раз и представляют собой компонент, состоящий из p-n-перехода.
Под воздействием света p-n-переход может генерировать электрический ток; это свойство используется в солнечных батареях.
С другой стороны, если пропустить, через переход электрический ток, то выделится свет, так работают светоизлучающие (СИД).
В транзисторах используются переходы с тремя прилегающими областями с добавленными примесями. К примеру, одна с фосфором, вторая с бором, третья снова с фосфором, т.е. получается структура типа n-p-n. Ток в таком случае подастся на среднюю область: (так называемая база). В большинстве электронных проектов вы будете (работать с компонентами, сделанными из полупроводников: такими как транзисторы, диоды и интегральные схемы. Именно полупроводниковая технология позволила значительно уменьшить размеры электронных устройств и создать, в частности, карманные компьютеры и радиоприемники.
Есть еще один тип ИС, широко использующийся в электронных проектах: микроконтроллер. Это такой тип электронной ИС, который может быть запрограммирован для управления сложными устройствами, например, роботами.
Простейшая схема
Возьмем батарейки, резистор, светодиод и кусочки проводов и соберем их вместе — и вот перед вами простая электронная схема. Вот что представляет собой схема: провода, соединяющие компоненты таким образом, что через них ток течет и возвращается обратно к источнику питания.
Рисунок 1 - Несколько компонентов, собранных в простую схему
На рисунке 1 показана простейшая схема. Части схемы (также называемые компонентами) размещены на так называемой макетной плате и соединены между собой при помощи проводов. Принцип работы макетной платы, вкратце, таков: на ней есть отверстия, в которые удобно вставлять электронные компоненты для построения простых схем.
На рисунке показаны провода, присоединенные к обоим выводам батареи. Такое подключение позволяет току вытекать из батареи, проходить через светодиод и другие компоненты (в данном случае - резистор) и возвращаться в батарею, замыкая, таким образом, цепь с током.
Реальную схему можно представить в виде схемы принципиальной. Принципиальная схема представляет собой чертеж, на котором показано, как соединены между собой компоненты. Посмотрите на принципиальную схему, изображенную на рисунке 2 и соответствующую той поделке, которую мы собрали
Рисунок 2 - Принципиальная схема
