Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по логике-1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
118.76 Кб
Скачать

25.Отношения между простыми суждениями. Логический квадрат.

Несравнимыми среди простых суждений являются суждения, имеющие различные субъекты или предикаты.

Сравнимыми являются суждения с одинаковыми субъектами и предикатами.

Д ля иллюстрации отношений между простыми суждениями используется логический квадрат:

Среди сравнимых различают совместимые суждения, которые могут быть одновременно истинными, и несовместимые суждения, которые одновременно истинными быть не могут.

Совместимость бывает трех видов: полная совместимость (эквивалентность); подчинение; частичная совместимость (субконтрарность). Несовместимость бывает двух видов: противоположность (контрарность) и противоречивость (контрадикторность).

I. Отношением подчинения связаны суждения А и I, Е и О. Общие суждения (А и Е) являются подчиняющими, а частные (I, О) подчиненными. Для суждений находящихся в отношении подчинения, имеет значение условие истинности: Если истинно А(Е), то истинно и I(O), но не наоборот.

II. Отношением противоречия связаны суждения Е и I, А и О. Два противоречивых суждения (согласно законам логики) не могут быть одновременно ни истинными, ни ложными Если А - истинно, то О - ложно

Если А - ложно, то О - истинно

Если О - истинно, то А - ложно

Если О - ложно, то А - истинно

Если Е - истинно, то I - ложно

Если Е - ложно, то I - истинно

Если I -истинно, то E - ложно

Если I - ложно, то E - истинно

III. Отношением контрарности (противоположности) связаны только общие суждение А и Е. Закон исключения третьего к таким суждениям не применим. А и Е могут оказаться одновременно ложными, но не могут быть одновременно истинными (пример: оба суждения "Все любят логику" и "никто не любит логику" - ложны).

IV. Отношение субконтрарности существует между частными суждениями I и О. I и О могут быть одновременно истинными, но не могут быть одновременно ложными (пример: оба суждения "Некоторые люди любят логику" и "некоторые люди не любят логику" - истинны).

26.Отношения между сложными суждениями.

Сопоставление сложных суждений позволяет разделить их на группу независимых и группу зависимых суждений.

К независимым относятся суждения, которые не имеют общих составляющих; для них характерны все сочетания истинных значений. Зависимые - это суждения, которые имеют одинаковые составляющие и могут различаться логическими связками, включая отрицание. Пример зависимых сложных суждений: "Норвегия или Швеция имеют выход к Балтийскому морю" и "Не верно, что Норвегия и Швеция имеют выход к Балтийскому морю". Хотя эти суждения различны по логической форме (первое из них - дизъюнктивное суждение, а второе - отрицание конъюнкции), вместе с тем они зависимы, поскольку включают одинаковые составляющие.

Сложные зависимые суждения могут быть совместимыми и несовместимыми.

Отношение совместимости.

К совместимым относятся суждения, которые одновременно могут быть истинными. Как и в случае простых суждений различают три вида совместимости сложных суждений: эквивалентность, частичная совместимость и подчинение.

Эквивалентными являются такие суждения, которые принимают одни и те же значения, т. е. одновременно являются либо истинными, либо ложными.

Отношение эквивалентности позволяет выражать одни сложные суждения через другие - конъюнкцию через дизъюнкцию или импликацию, и наоборот.

Частичная совместимость характерна для суждений, которые могут быть одновременно истинными, но не могут быть одновременно ложными.

Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего, подчиненное всегда будет истинным.

Отношение логического подчинения, позволяющее по истинности подчиняющего суждения определить истинность подчиненного, составляет основу фундаментального в науке логики понятия логического следования, регулирующего все виды рассуждений.

Отношение несовместимости.

Несовместимыми являются суждения, которые одновременно не могут быть истинными. Из двух видов несовместимости одна - противоположность, другая - противоречие.

Противоположность - отношение между суждениями, которые одновременно не могут быть истинными, но могут быть одновременно ложными.

Противоречащими являются суждения, которые одновременно не могут быть ни истинными, ни ложными. При истинности одного из них другое будет ложным, а при ложности первого второе будет истинным.

Чтобы получить сложное суждение, противоречащее исходному, последнее нужно подвергнуть отрицанию.

Сопоставление суждений в дискуссиях. Отчетливое представление об отношениях, в которых могут находиться суждения, позволяет логически грамотно анализировать высказывания участников дискуссий. Встречаются ситуации, когда логический анализ показывает совместимость различных по структуре суждений. Нередко это случается с частными суждениями. Пропонент утверждает, что "Некоторые S есть Р"; оппонент настаивает, что "Некоторые S не есть Р". На поверку же выходит, что эти суждения не исключают друг друга, а являются частично совместимыми и оба могут оказаться истинными.

В спорах и дискуссиях могут смешиваться противоречащие и противоположные суждения; Например, обвинитель утверждает, что в рассматриваемом случае имело место убийство, которое совершено умышленно. Защитник не отрицает факта убийства, но считает, что оно было совершено без умысла. Каждый из них считает, что утверждения исключают друг друга как альтернативные. В действительности же оказывается, что эти высказывания находятся в отношении противоположности. Отсюда следует, что если будет показана в целом несостоятельность утверждения обвинителя, то это еще не означает правоту защитника. Точно так же опровержение утверждений защитника логически не обязывает принимать точку зрения обвинителя. Может оказаться, что оба утверждения ложны, и задача сведется к поиску нового объяснения фактам.

27.Правила построения таблицы истинности.

Алгоритм построения  таблицы  истинности:

1.    подсчитать количество переменных n в логическом выражении;

2.   определить число строк в таблице по формуле m=2n, где n - количество переменных;

3.   подсчитать количество логических операций в формуле;

4.   установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5.   определить количество столбцов: число переменных + число операций;

6.   выписать наборы входных переменных;

7.   провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

1.      разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2.      разделить колонку  значений  второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3.      продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа. 

Пример 1. Для формулы  A/\ (B \/ ¬B /\¬C) постройте  таблицу истинности.

 Количество логических переменных 3, следовательно, количество строк - 23 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов - 3 + 5 = 8.

 

  

Пример 2. Определите истинность  логического выражения  F(А, В) = (А\/ В)/\(¬А\/¬В) .

1. В выражении две переменные А и В (n=2).

2.  mстрок=2n, m=22=4 строки.

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А\/ В;  2) ¬А;  3) ¬В;  4) ¬А\/¬В;  5) (А\/ В)/\(¬А\/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

 

А

В

А\/ В

¬А

¬В

¬А\/¬В

F

0

0

0

1

1

1

0

0

1

1

1

0

1

1

1

0

1

0

1

1

1

1

1

1

0

0

0

0

Вывод: логическое выражение принимает значение истина при наборахF(0,1)=1 и F(1,0)=1.

28.Умозаключение. Структура умозаключений.

Познавая окружающую действительность, мы приобретаем новые знания. Неко­торые из них – непосредственно, при помощи чувств; другие же — опосредованно, на основании логического мышления, путем выведения новых знаний из знаний уже имеющихся. Эти знания называются опосредствованными, или выводными. Логиче­ской формой получения выводных знаний является умозаключение.

Умозаключение — это форма мышления, посредством которой из одного или не­скольких суждений выводится новое суждение. Логическая сущность умозаключения состоит в движении мысли от анализа имеющегося знания к синтезу нового знания. Это движение имеет объективный ха­рактер и определяется реальными связями действительности. Объективная связь, от­раженная в сознании, обеспечивает логическую связь мыслей. Напротив, отсутствие объективных связей действительности приводит к логическим ошибкам.

Структура любого умозаключения включает 3 элемента [3, c.157]:

  • посылки - исходное знание (суждение), из которого выводится новое суждение;

  • обосновывающее знание, выражающееся в правилах или выводе умозаключения (логический переход от посылок к заключению);

  • выводное знание, выражающееся в заключении или выводе (новое суждение, полученное логическим путем из посылок).

При анализе умозаключения посылки и заключение принято записывать отдельно, располагая их друг над другом. Заключе­ние записывают под горизонтальной чертой, отделяющей его от посылок и обо­значающей логическое следование. В соответствии с этим рассмотрим следующий пример умозаключения:

Все граждане России имеют право на образование – посылка

Новиков – гражданин России - посылка

Новиков имеет право на образование – заключение

При наличии содержательной связи между посылками можно получить в процессе рассуждения новое истинное знание при соблюдении двух условий.

Во-первых, должны быть истинными исходные суждения – посылки. Однако сле­дует сказать, что иногда и ложные суждения могут дать истинное заключение. Так, в результате специального подбора ложных посылок в следующем рассуждении полу­чим истинное заключение: Все слоны имеют крылья. Все птицы – слоны. Все птицы имеют крылья.

Это свидетельствует о том, что ориентация только на форму (структуру) посылок при игнорировании их объективно – истинных связей может создать видимость пра­вильного умозаключения.

Во-вторых, в процессе рассуждения необходимо соблюдать правила вывода, кото­рые обусловливают логическую правильность умозаключения. Без этого даже из ис­тинных посылок можно получить ложное заключение. Например: Все гусеницы едят капусту. Я ем капусту. Следовательно, я гусеница.