- •Оглавление
- •Вопросы к блокам по курсу «Исследование операций» Блок 1
- •Тема 1: Линейное программирование. Графическая интерпретация задач линейного программирования Задание 1
- •Задание 2
- •З адание 3
- •Задание 4
- •Задание 5
- •Тема2:. Графический метод решения задач линейного программирования Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Самостоятельная работа № 1
- •Тема 3: Симплексный метод решения злп Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6.
- •Задание 7
- •Задание 8
- •Задание 9
- •Самостоятельная работа № 2
- •Тема № 4 Двойственные задачи Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Самостоятельная работа №3
- •Тема 5: Транспортные задачи Задание 1
- •Задание 2
- •Задание 3
- •Самостоятельная работа № 4.
- •Тема 6: Транспортные задачи с ограничениями по пропускной способности Задание 1
- •Задание 2
- •Тема 7: Нелинейное программирование Задание 1
- •5) При ограничении .
- •Задание 2
- •Задание 3
- •Самостоятельная работа № 5.
- •Тема 8. Теория игр Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Задание 7
- •Тема 9. Теория массового обслуживания
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5.
- •Задание 6
- •Задание 7.
- •Задание 8
- •Задание 9..
- •Задание 10
- •Задание 11.
- •Задание 12.
- •Задание 13
- •Задание 14
- •Задание 15
- •Задание 16
- •Лабораторное занятие № 1 Тема: Использование программных комплексов при решении задач линейного программирования
- •Лабораторное занятие №2 Тема: Теория массового обслуживания
- •Домашняя контрольная работа
- •Литература
Задание 2
Для производства столов и шкафов мебельная фабрика использует необходимые ресурсы. Нормы затрат ресурсов на одно изделие данного вида, прибыль от реализации одного изделия и общее количество имеющихся ресурсов каждого вида приведены в таблице.
Ресурсы |
Нормы затрат ресурсов на одно изделие |
Общее количество ресурсов |
|
стол |
шкаф |
||
Древесина (м3): I вида II вида Трудоемкость (человеко-ч) |
0,2 0,1 1,2 |
0,1 0,3 1,5 |
40 60 371,4 |
Прибыль от реализации одного изделия (руб.) |
8 |
6 |
|
Определить, сколько столов и шкафов фабрике следует изготовлять, чтобы прибыль от их реализации была максимальной.
РЕШЕНИЕ
Составим математическую модель задачи:
Пусть ________________________________________________________
Целевая функция:
Система ограничений:
1: |
A |
B |
|
2: |
A |
B |
|
3: |
A |
B |
x |
|
|
x |
|
|
|
x |
|
|
|
y |
|
|
y |
|
|
|
y |
|
|
Решение находится, исходя из решения системы:
Тогда: =_______; =_________ и max Z=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ответ:
