Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы 1 курс.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
5.91 Mб
Скачать

Определение

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом[2]:

где  — радиус-вектор центра масс,  — радиус-вектор i-й точки системы,  — массаi-й точки.

Для случая непрерывного распределения масс:

где  — суммарная масса системы,  — объём,  — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением[3]:

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

  1. Момент силы, момент импульса.

  1. Закон сохранения момента импульса.

Зако́нсохране́ниямоме́нтаи́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

  1. Момент инерции.

  1. Теорема Штейнера.

  1. Кинетическая энергия вращающегося и катящегося тела.

Возьмем абсолютно твердое тело, вращающееся около неподвижной оси z, проходящей через него (рис. 1). Разобьем тело на маленькие объемы с элементарными массами m1, m2,..., mn , находящиеся на расстоянии r1, r2,..., rn от оси. При вращении твердого тела относительно неподвижной оси каждый из его элементарных объемов массами mi опишет окружность соответствующих радиусов ri; при этом объем будет иметь соответствующую линейную скорость vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова: (1) Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов: или Используя выражение (1), получаем где Jz - момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела (2) Из сравнения формулы (2) с выражением для кинетической энергии поступательно движущегося тела (T=mv2/2), мы видим, что момент инерции является мерой инертности тела при вращательном движении. Формула (2) справедлива для тела вращающегося вокруг неподвижной оси. В качеcтве примера напишем формулу для плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения. Его энергия движения складывается из энергии поступательного движения и энергии вращения: где m - масса катящегося тела; vc - скорость центра масс тела; Jc - момент инерции тела относительно оси, проходящей через его центр масс; ω - угловая скорость тела.