Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по матанализу. Доказательства. / Шпоры и теория по матанализу.doc
Скачиваний:
109
Добавлен:
20.06.2014
Размер:
460.8 Кб
Скачать

30. Общие правила дифференцирования.

( f (g (x)) )’ = f ‘(g(x)) · g ‘ (x)

(u v )’ = v · u v-1 · u’ + uv · v’ · ln u

31.Теорема о производной обратной функции.

Если функция y=f(x) имеет обратную функцию x=g(y) и в точке х0 производная f(x) не равна нулю, то обратная функция g(y) диффернцируема в точке у0=f(x0) и g(y0)=1/f(x0) или xy=1/yx.

32.Теорема о производной сложной функции.

.Если функция у=f(x) дифференцируема в точке t0 и g(t0)=x0, то сложная функция y=f(g(x)) также дифференцируема в t0 и выполняется следующая формула: d f(g(t))/dt|t=to=f(x0)*g(t0) или yt=yx*xt.

33. Геометрический смысл производной и дифференциала.

Приращением функции y =f(x) в точке x0 называется разность

Δу=f(x)-f(x0)= f(x+Δx)-f(x0)

Производной от функции y=f(x) в точке х0 наз. Предел отношения Δу/Δх, когда Δх→0 (при усл., что этот предел существует)

Написать обозначение производной.

Геометрический смысл производной.

Пусть Г- график функции y=f(x). Рассмотрим на Г т. А(x0,f(x0)) и т. В (x0+Δx,f(x0+Δx))

Прямая АВ называется секущей. Будем считать, что y=f(x)-непрерывная функция, тогда если Δх→0, то f(x0+Δx)→f(x0), т.е. В→А при Δх→0.

Пусть γ – угол наклона секущей относительно оси ОХ. Если существует предел lim γ=γ0 при Δх→0, то прямая, проходящая через А и образующая с осью ОХ угол γ0, называется касательной к Г в точке А.

Пусть С(f(x0+Δх), f(x0)) – точка, дополняющая отрезок АВ до прямоуг. треугольника АВС. Т.к. АС//ОХ, то tgγ =Δу/Δх. Переходя к пределу, получим: tgγ0=f′(x0)

Т.е. геометрический смысл производной состоит в том, что f′(x0) – это тангенс угла наклона касательной к графику y=f(x) в точке (x0,f(x0)).

34. Уравнение касательной.

Найдем ур-е касательной к графику Г ф-и y=f(x) в точке А(х0, f(x0)): т.к. т. А принадлежит Г и ур-ю касательной, то f(x0)=kx0+b, откуда b= f(x0)-kx0, значит, касательная задается след. Ур-м:

y= kx+ f(x0)-kx0= f(x0)+k(х-x0)

Т.к. k= f′(x0), то

y=f(x0)+ f′(x0)(х-х0).

34. Определение эластичности функции.

функции y = f(x) в точке х0 называется следующий предел

Eyx(x0) = lim ((Δy/y): (Δx/x)).

Δx  0

Эластичность Ey – это коэффициент пропорциональности между относительными изменениями величин y и x.)

35. Теорема Ролля.

Если функция, непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.

36. Теорема Лагранжа.

Пусть функция f(x)

  1. непрерывна на отрезке [a, b];

  2. дифференцируема в интервале (a, b).

Тогда существует точка с О (a, b) такая, что

 

f(b) − f(a) = f '(c) · (ba) .

(1)

 Формула (1) называется формулой Лагранжа, или формулой конечных приращений

37. Теорема Коши.

Пусть даны две функции f(x) и g(x)такие, что:

  1. f(x) и g(x)определены и непрерывны на отрезке ;

  2. производные иконечны на интервале;

  3. производные ине обращаются в нуль одновременно на интервале

  4. ;

тогда

, где

(Если убрать условие 4, то необоходимо усилить условие 3: g'(x) не должна обращаться в нуль нигде в интервале (a,b).)

38. Правило Лопиталя.

Теорема (правило Лопиталя). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел

(конечный или бесконечный),

то существует и предел

при этом выполняется равенство:

39. Производные и дифференциалы высших порядков.

Если для функции y=f(x) определена производная у(к-1) порядка (к-1), то производную у(к) порядка к (при условии ее существования) определяют как производную от производной порядка (к-1), т.е. у(к) = (у(к-1))′ . В частности, у’’=(y’)’- производная второго порядка, y’’’=(y’’)’ – третьего и т.д.

Дифференциалы высших порядков ф-и y=f(v) последовательно определяются таким образом:

d2y=d(dy) – диф-л 2-го порядка

d3y=d(d2y)…

dny=d(d n-1 y) - диф-л n-го порядка

40. Формула Тейлора. Формула Маклорена.

теорема Тейлора.

Пусть функция f(x) имеет в точке x = a и некоторой ее окрестности производные порядка n+1. Тогда между точками a и x a найдется такая точка , что справедлива следующая формула:

Формула (10) называется формулой Тейлора, а выражение

представляет остаточный член в форме Лагранжа. Заметим, что если функция f(n+1)(x) ограничена в окрестности точки a, тогда остаточный член является бесконечно малой при x a более высокого порядка, чем (x-a)n. Таким образом, остаточный член можно записать в виде

Rn+1(x) = o((x-a)n) при x a.

Данная форма записи остаточного члена называется формой Пеано.

Формулой Маклорена называется формула Тейлора при a = 0:

Остаточный член в форме Пеано для формулы Маклорена имеет вид

Rn+1 = o(xn) при x 0.

Приведем разложения некоторых элементарных функций поформуле Маклорена

Найдите, исходя из

определения, производную функции f(x) в точке x0:

26. f(x) = x3, x0 - произвольное число.

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f(x)= =

f(x) = x3

f ′(xо)= = ===3

27. f(x)=sinx, xо-произвольное число

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f ’(x)= =

f ′(xо)= = = =cosx0

28. f(x)=, xо =9

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f ’(x)= =

f ’(x)= = ==1/6

29. f(x)=, xо =1

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f ’(x)= =

f ’(x)= = ===-2

30. f(x)=xx, x0=0

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f ’(x)= =

31.

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего произвольным образом к 0.

f(x)= =

Найдите эластичность функции f (x) в точке x0:

38. f(x) = x4 , x0 = 9.

Эластичностью функции y = f(x) в точке х0 называется предел

f (x) = x4 => E(x)=, при x0 = 9.

39. f(x) = 3x , x0 = 5.

Эластичностью функции y = f(x) в точке х0 называется предел

E(x)=