Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dokument_Microsoft_Word.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.12 Mб
Скачать

14. Рост и развитие растений

Рост и развитие — неотъемлемые свойства всякого живого организма. Это интегральные процессы. Растительный организм поглощает воду и питательные вещества, аккумулирует энергию, в нем происходят бесчисленные реакции обмена веществ, в результате чего он растет и развивается. Процессы роста и развития тесно взаимосвязаны, так как обычно организм и растет, и развивается. Однако темпы роста и развития могут быть разными, быстрый рост может сопровождаться медленным развитием или быстрое развитие медленным ростом. Так, например, растение хризантемы в начале лета (длинный день) быстро растет, но не зацветает, следовательно, развивается медленно. Подобное происходит с высеянными весной озимыми растениями: они быстро растут, но не переходят к репродукции. Из этих примеров видно, что критерии, определяющие темпы роста и развития, различны. Критерием темпов развития служит переход растений к воспроизведению, к репродукции. Для цветковых растений это закладка цветочных почек, цветение. Критерии темпов роста обычно определяют скоростью нарастания массы, объема, размеров растения. Сказанное подчеркивает нетождественность этих понятий и позволяет рассмотреть процессы роста и развития последовательно.

Растение растет как в длину, так и в толщину. Рост в длину происходит обычно в верхушках побегов и корней где расположены клетки образовательной ткани. Они составляют так называемые конусы нарастания . Молодые клетки образовательной ткани постоянно делятся, увеличиваются их число и размеры, в результате чего корень или побег нарастает в длину. У злаков образовательная ткань находится в основании междоузлия, в этом месте и растет стебель. Зона роста у корня не превышает 1 см, у побега она достигает 10 см и более.

Скорость роста корня зависит от влажности, температуры, содержания кислорода в почве. Большая потребность в кислороде у томата, гороха, кукурузы, меньше - у риса, гречихи. Лучше всего растут корни в рыхлой и влажной почве. Рост корней зависит от интенсивности фотосинтеза. Условия, благоприятные для фотосинтеза, положительно влияют и на рост корней. Скашивание надземной части растений термозит рост корней, приводит к уменьшению их массы. Обильный урожай плодов также задерживает рост корней дерева, а удаление соцветий способствует росту корней.

Рост растений в толщину происходит за счет деления клеток образовательной ткани - камбия, расположенного между лубом и древесиной. У однолетних растений клетки камбия прекращают делиться к моменту цветения, а у деревьев и кустарников они перестают делиться с середины осени и до весны, когда растение вступает в стадию покоя. Периодичность деления клеток камбия приводит к образованию годичных колец в стволе дерева. Годичное кольцо - это прирост древесины за год. По числу годичных колец на пне определяют возраст спиленного дерева, а также те климатические условия, в которых оно росло. Широкие годичные кольца свидетельствуют о благоприятных климатических условиях для роста растения, а узкие годичные кольца - о менее благоприятных условиях.

Рост растений происходит при определенной температуре, влажности, освещенности. В период роста интенсивно расходуются органические вещества и заключенная в них энергия. Органические вещества поступают в растущие органы из фотосинтезирующей и запасающей тканей. Необходимы также для роста вода и минеральные вещества. Однако только воды и питательных веществ недостаточно для роста. Нужны особые вещества - гормоны - внутренние факторы роста. Они необходимы растению в небольших количествах. Увеличение дозы гормона вызывает противоположное действие - торможение роста. Широко распространен в мире растений гормон роста гетероауксин. Если срезать верхушку стебля, то рост его замедляется, а затем приостанавливается. Это свидетельствует о том, что гетероауксин образуется в растущих зонах стебля, откуда он поступает в зону растяжения и оказывает влияние на цитоплазму клеток, повышает пластичность и растяжимость их оболочек. Гормон гиббереллин также стимулирует рост растений. Этот гормон вырабатывается особым видом низших грибов. В небольших дозах он вызывает удлинение стебля, цветоножки, ускорение цветения растений. Карликовые формы гороха и кукурузы после обработки гиббереллином достигают нормального роста. Гормоны роста выводят из состояния покоя семена и почки, клубни и луковицы.

У многих растений обнаружены особые вещества - ингибиторы, которые тормозят рост. Они содержатся в мякоти плодов яблони, груши, томата, жимолости, в оболочках семян каштана, пшеницы, в зародышах подсолнечника, в луковицах лука и чеснока, в корнях моркови, редиса. Содержание ингибиторов возрастает к осени, благодаря чему плоды, семена, корнеплоды, луковицы, клубни хорошо хранятся и не прорастают осенью и в начале зимы. Однако ближе к весне при наличии благоприятных условий они начинают прорастать, так как в течение зимы ингибиторы разрушаются.

Рост растений - процесс непостоянный: период активного роста весной и летом сменяется затуханием процессов роста осенью. Зимой деревья, кустарники и травы пребывают в состоянии покоя. В период покоя прекращается рост, сильно замедляются процессы жизнедеятельности у растений. Например, зимой дыхание у них в 100 - 400 раз слабее, чем летом. Однако не следует думать, что у растений в состоянии покоя полностью прекращается жизнедеятельность. В покоящихся органах (в почках деревьев и кустарников, в клубнях, луковицах и корневищах многолетних трав) важнейшие процессы жизнедеятельности продолжаются, но совершенно прекращается рост, даже если для этого будут все условия. В период глубокого покоя растения трудно "пробудить". Например, только что убранные с поля клубни картофеля не будут прорастать даже в теплом и влажном песке. Но уже через несколько месяцев у клубней появятся ростки и этот процесс трудно будет задержать.

Покой - это реакция организма на изменение условий окружающей среды. Изменение условий среды может удлинить или сократить период покоя. Так, если искусственно удлинить день, то можно задержать переход растений в состояние покоя. Таким образом, покой растений - это важное приспособление к переживанию неблагоприятных условий, возникшее в ходе эволюции. Процессы роста лежат в основе движения растений. Движения растений различны. Широко распространены в природе тропизмы - изгибы органов растения под влиянием фактора, действующего в одном направлении. Например, при освещении растения с одной стороны оно изгибается в сторону света. Это фототропизм. Растение изгибается потому, что его органы на освещенной стороне растут медленнее, чем не на освещенной, так как свет замедляет деление клеток. Реакцию растений на действие силы тяжести называют геотропизмом. Стебель и корень по-разному реагируют на земное притяжение. Стебель растет вверх, в противоположном направлении к действию силы тяжести (отрицательный геотропизм), а корень - вниз, по направлению действия этой силы (положительный геотропизм). Переверните прорастающее семя корнем вверх, а стеблем вниз. Через некоторое время вы увидите, что корень изогнется вниз, а стебель вверх, т.е. они займут обычное для них положение.

Движением растения реагируют и на присутствие в среде химических веществ. Эта реакция называется хемотропизмом. Он играет большую роль в минеральном питании, а также в оплодотворении растений. Так, в почве корни растут по направлению к питательным веществам. Но они изгибаются в противоположную сторону от ядохимикатов, гербицидов. Пыльцевое зерно прорастает, как правило, только на рыльце пестика растений своего вида, а спермин (мужские половые клетки) движутся по направлению к семязачатку, к расположенным в нем яйцеклетке и центральному ядру. Если же пыльцевое зерно попадает на рыльце цветка другого вида, то оно вначале прорастает, а затем изгибается в обратную от семязачатка сторону. Это свидетельствует о том, что пестик выделяет вещества, которые стимулируют рост "своего" пыльцевого зерна, но подавляют рост чужеродной пыльцы. Растения отвечают тропизмами и на воздействие температуры, воды, на повреждение органов. Для растений характерен и иной тип движения - настии. В основе настий также лежит рост растения, который вызывается различными раздражителями, действующими на растение в целом. Различают фотонастии, вызванные изменением освещения, термонастии, связанные с изменением температуры. Многие цветки открываются утром и закрываются вечером, т.е. реагируют на изменение освещения. Например, утром, при ярком солнечном свете открываются корзинки одуванчика, а вечером, с уменьшением освещенности, они закрываются. Цветки душистого табака, наоборот, раскрываются вечером, с уменьшением освещенности. В основе настий, как и у тропизмов, также лежит неравномерный рост: если сильнее растет верхняя сторона лепестков, цветок раскрывается, если нижняя - закрывается. Следовательно, в основе движения органов растения лежит их неравномерный рост. Тропизмы и настии играют большую роль в жизни растений, это один из признаков приспособленности растений к среде обитания, к активной реакции на воздействие различных ее факторов.

Процессы роста - неотъемлемая часть индивидуального развития растений, или онтогенеза. Все индивидуальное развитие особи слагается из целого ряда процессов, определенных периодов в жизни особи, начиная с момента ее появления и до ее смерти. Количество периодов онтогенеза и сложность процессов развития зависят от уровня организации растений. Так, индивидуальное развитие одноклеточных организмов начинается с образованием новой, дочерней клетки (после деления материнской клетки), продолжается в течение ее роста и заканчивается ее делением. Иногда у одноклеточных бывает период покоя - при образовании споры; затем спора прорастает и развитие продолжается до деления клетки. При вегетативном размножении индивидуальное развитие начинается с момента отделения части материнского организма, продолжается формированием новой особи, ее жизнью и заканчивается смертью. У высших растений при половом размножении онтогенез начинается с оплодотворения яйцеклетки и включает периоды развития зиготы и зародыша, образования семени (или споры), его прорастания и формирования молодого растения, его зрелости, репродуктивности, увядания и смерти.

Если у одноклеточных организмов все процессы их развития и жизнедеятельности протекают в одной клетке, то у многоклеточных процессы онтогенеза гораздо сложнее и состоят из целого ряда преобразований. В ходе развития новой особи в результате деления клеток образуются различные ткани (покровная, образовательная, фотосинтезирующая, проводящая и др.) и органы, выполняющие разнообразные функции, формируется половой аппарат, организм вступает в пору размножения, дает потомство (одни растения - раз в жизни, другие - ежегодно в течение многих лет). В процессе индивидуального развития в организме накапливаются необратимые изменения, он стареет и отмирает. Продолжительность онтогенеза, т.е. жизни особи, также зависит от уровня организации растений. Одноклеточные организмы живут несколько дней, многоклеточные - от нескольких дней до нескольких сотен лет.

Продолжительность развития растительных организмов зависит и от факторов среды: света, температуры, влажности и др. Ученые установили, что при температуре 25°С и выше ускоряется развитие цветковых растений, они раньше зацветают, образуют плоды и семена. Обильная влажность ускоряет рост растений, но задерживает их развитие. Сложное воздействие на развитие растений оказывает свет: растения реагируют на продолжительность дня. В процессе исторического развития одни растения нормально развиваются, если продолжительность светового дня не превышает 12 ч. Это растения короткого дня (соя, просо, арбуз). Другие растения зацветают и образуют семена при выращивании в условиях более продолжительного дня. Это растения длинного дня (редис, картофель, пшеница, ячмень).

Знания о закономерностях роста и индивидуального развития растений используются человеком на практике при их выращивании. Так, свойство растений образовывать боковые корни при удалении кончика главного корня используют при выращивании овощных и декоративных растений. У рассады капусты, томатов, астр и других культурных растений при пересадке в открытый грунт прищипывают кончик корня, т. е. проводят пикировку. В результате прекращается рост главного корня в длину, усиливается отрастание боковых корней и распространение их в верхнем, плодородном слое почвы. Вследствие этого улучшается питание растений и увеличивается их урожай. Пикировка широко используется при высадке рассады капусты. Развитию мощной корневой системы способствует окучивание - рыхление и приваливание почвы к нижним частям растений. Таким путем улучшается поступление в почву воздуха и тем самым создаются нормальные условия для дыхания и роста корней, для развития корневой системы. Это, в свою очередь, улучшает рост листьев, вследствие чего усиливается фотосинтез и образуется больше органических веществ.

Обрезка верхушек молодых побегов, например яблони, малины, огурцов, приводит к прекращению их роста в длину и усилению роста боковых побегов. В настоящее время для ускорения роста и развития растений применяют стимуляторы роста. Их используют обычно при черенковании и пересадке растений для ускорения образования корней. В хозяйственных целях иногда необходимо затормозить рост растений, например прорастание картофеля зимой и особенно весной. Появление ростков сопровождается ухудшением качества клубней, потерей ценных веществ, снижением содержания крахмала, накоплением ядовитого вещества соланина. Поэтому для задержки прорастания клубней перед закладкой на хранение их обрабатывают ингибиторами. В результате клубни до весны не прорастают и сохраняются свежими.

Общая схема развития каждого организма запрограммирована в его наследственной основе. Растения резко различаются по продолжительности жизни. Известны растения, которые заканчивают свой онтогенез на протяжении 10—14 суток (эфемеры). Вместе с тем существуют растения, продолжительность жизни которых исчисляется тысячелетиями (секвойи). Независимо от продолжительности жизни все растения можно разделить на две группы: монокарпические, или плодоносящие один раз, и поликарпические, или плодоносящие многократно. К монокарпическим относят все однолетние растения, большинство двулетних, а также некоторые многолетние. Многолетние монокарпические растения (например, бамбук, агава) приступают к плодоношению после нескольких лет жизни и после однократного плодоношения отмирают. Большинство многолетних растений относят к поликарпическим.

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивос­ти, наследственности, отбора). На протяжении филогенеза каж­дого вида растений в процессе эволюции выработались опреде­ленные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длитель­ного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня — для северных.

В природе в одном географическом регионе каждый вид рас­тений занимает экологическую нишу, соответствующую его био­логическим особенностям: влаголюбивые — ближе к водоемам, теневыносливые — под пологом леса и т. д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельско­хозяйственных культур, испытывая действие тех или иных небла­гоприятных факторов, проявляют устойчивость к ним как ре­зультат приспособления к условиям существования, сложившим­ся исторически, что отмечал еще К. А. Тимирязев. Способность к эффективной защите от действия неблагоприятных абиотичес­ких и биотических факторов среды, устойчивость к ним возделы­ваемых видов и сортов — обязательные свойства районирован­ных в данном регионе сельскохозяйственных культур.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (фи-

зиологическая адаптация), а у популяции организмов (вида) — благодаря механизмам генетической изменчивости, наследствен­ности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

Границы приспособления и устойчивости

В естественных для вида природных условиях произрастания или возделывания растения в процессе своего роста и развития часто испытывают воздействие неблагоприятных факторов внеш­ней среды, к которым относят температурные колебания, засуху, избыточное увлажнение, засоленность почвы и т. д. Каждое рас­тение обладает способностью к адаптации в меняющихся услови­ях внешней среды в пределах, обусловленных его генотипом. Чем выше способность растения изменять метаболизм в соответ­ствии с окружающей средой, тем шире норма реакции данного растения и лучше способность к адаптации. Это свойство отли­чает устойчивые сорта сельскохозяйственных культур. Как пра­вило, несильные и кратковременные изменения факторов внеш­ней среды не приводят к существенным нарушениям физиологи­ческих функций растений, что обусловлено их способностью сохранять относительно стабильное состояние при изменяющих­ся условиях внешней среды, т. е. поддерживать гомеостаз. Одна­ко резкие и длительные воздействия приводят к нарушению многих функций растения, а часто и к его гибели.

При действии неблагоприятных условий снижение физиоло­гических процессов и функций может достигать критических уровней, не обеспечивающих реализацию генетической програм­мы онтогенеза, нарушаются энергетический обмен, системы ре­гуляции, белковый обмен и другие жизненно важные функции растительного организма. При воздействии на растение неблаго­приятных факторов (стрессоров) в нем возникает напряженное состояние, отклонение от нормы — стресс. Стресс — общая не­специфическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений (В. В. Поле­вой, 1989):физические — недостаточная или избыточная влаж­ность, освещенность, температура, радиоактивное излучение, ме­ханические воздействия; химические — соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.);биологические — поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Сила стресса зависит от скорости развития неблагоприятной для растения ситуации и уровня стрессирующего фактора. При медленном развитии неблагоприятных условий растение лучше приспосабливается к ним, чем при кратковременном, но силь­ном действии. В первом случае, как правило, в большей степени проявляются специфические механизмы устойчивости, во вто­ром — неспецифические.

Защитные возможности растений

В неблагоприятных природных условиях устойчивость и про­дуктивность растений определяются рядом признаков, свойств и защитно-приспособительных реакций. Различные виды растений обеспечивают устойчивость и выживание в неблагоприятных ус­ловиях тремя основными способами: с помощью механизмов, которые позволяют им избежать неблагоприятных воздействий (состояние покоя, эфемеры и др.); посредством специальных структурных приспособлений; благодаря физиологическим свой­ствам, позволяющим им преодолеть пагубное влияние окружаю­щей среды.

Однолетние сельскохозяйственные растения в умеренных зонах, завершая свой онтогенез в сравнительно благоприятных условиях, зимуют в виде устойчивых семян (состояние покоя). Многие многолетние растения зимуют в виде подземных запасаю­щих органов (луковиц или корневищ), защищенных от вымерза­ния слоем почвы и снега. Плодовые деревья и кустарники умерен­ных зон, защищаясь от зимних холодов, сбрасывают листья.

Защита от неблагоприятных факторов среды у растений обес­печивается структурными приспособлениями, особенностями анатомического строения (кутикула, корка, механические ткани и т. д.), специальными органами защиты (жгучие волоски, ко­лючки), двигательными и физиологическими реакциями, выра­боткой защитных веществ (смол, фитонцидов, токсинов, защит­ных белков).

К структурным приспособлениям относятся мелколистность и даже отсутствие листьев, воскообразная кутикула на поверхности листьев, их густое опущение и погруженность устьиц, наличие сочных листьев и стеблей, сохраняющих резервы воды, эректоидность или пониклость листьев и др. Растения располагают различными физиологическими механизмами, позволяющими приспосабливаться к неблагоприятным условиям среды. Это САМ-тип фотосинтеза суккулентных растений, сводящий к ми­нимуму потери воды и крайне важный для выживания растений в пустыне и т. д.

Многочисленными физиологическими изменениями сопро­вождается развитие холодоустойчивости и морозостойкости у

495

озимых, двулетних и многолетних растений при уменьшении длины дня и снижении температуры в осеннее время. У сельско­хозяйственных растений особое значение имеет устойчивость, определяемая выносливостью клеток растений, их способностью адаптироваться в изменяющихся условиях среды, вырабатывать необходимые для жизнедеятельности продукты метаболизма. Лучше всего растения переносят неблагоприятные условия в со­стоянии покоя.

Первым сигналом для перехода к состоянию покоя является сокращение светового периода. При этом в клетках растений начинаются биохимические изменения, приводящие в конечном счете к накоплению запасных питательных веществ, снижению оводненности клеток и тканей, образованию защитных структур, накоплению ингибиторов роста. Примером такой подготовки могут служить сбрасывание листьев в осенний период у много­летних растений, развитие запасающих органов у двулетних и образование семян у однолетних.

ХОЛОДОСТОЙКОСТЬ РАСТЕНИЙ

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Подхолодостойкос­тью понимают способность растений переносить положительные температуры несколько выше О 0С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отми­рают при температурах от 0 до 10 0С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низ­кие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболева­ниям и вообще не происходит заметных повреждений растений.

Степень холодостойкости разных растений неодинакова. Многие растения южных широт повреждаются холодом. При температуре 3 °С повреждаются огурец, хлопчатник, фасоль, ку­куруза, баклажан. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода.

Накопление зеленой массы кукурузой не происходит при тем­пературе ниже 10 оС. Устойчивость растений к холоду зависит от периода онтогенеза. Разные органы растений также различаются по устойчивости к холоду. Так, цветки растений более чувстви­тельны, чем плоды и листья, а листья и корни чувствительнее стеблей. Наиболее холодостойкими являются растения раннего срока посева.

Для сравнения рассмотрим особенности прорастания малоус­тойчивой к холоду кукурузы. При температуре 18—20 оС всходы у кукурузы появляются на 4-й день, а при 10—12 "С — только на 12-й день. О холодостойкости растений косвенно можно судить по показателю суммы биологических температур. Чем меньше эта величина, тем быстрее растения созревают и тем выше их устойчивость к холоду. Показатели суммы биологических темпе­ратур соответствуют скороспелости растений: очень раннеспелые имеют сумму биологических температур 1200 оС, раннеспелые — 1200—1600, среднераннеспелые — 1600—2200, среднеспелые — 2200—2800, среднепозднеспелые — 2800—3400, позднеспелые — 3400-4000 оС.

Физиолого-биохимические изменения у теплолюбивых расте­ний при пониженных положительных температурах.

Повреждение растений холодом сопровождается потерей ими тургора и из­менением окраски (из-за разрушения хлорофилла), что является следствием нарушения транспорта воды к транспирирующим органам. Кроме того, наблюдаются значительные нарушения физиологических функций, которые связаны с нарушением об­мена нуклеиновых кислот и белков. Нарушается цепь ДНК -> РНК -> белок -> признак.

У некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приво­дят к подавлению функции запасания энергии этими органоида­ми, что способствует нарушению энергетического обмена расте­ния в целом. Основной причиной повреждающего действия низ­кой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщен­ных жирных кислот из жидкокристаллического состояния в со­стояние геля, а также общие изменения процессов обмена ве­ществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-

ет) осевой градиент потенциалов покоя (ПП), активный транс­порт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изме­нения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Приспособление растений к низким положительным темпера­турам.

У растений более холодостойких отмеченные наруше­ния выражены значительно слабее и не сопровождаются гибе­лью растения (табл. 1). Устойчивость к низким температу­рам — генетически детерминированный признак. Изменение уровня физиологических процессов и функций при действии низких положительных температур может служить диагности­ческим показателем при сравнительной оценке холодостойкос­ти растений (видов, сортов). Холодостойкость растений опре­деляется способностью растений сохранять нормальную струк­туру цитоплазмы, изменять обмен веществ в период охлаждения и последующего повышения температуры на до­статочно высоком уровне.

Для оценки холодостойкости растений используют различные методы диагностики (прямые и косвенные). Это холодный метод проращивания семян, сверхранние посевы в сырую и непрогре­тую почву, учет интенсивности появления всходов, темпов роста, накопления массы, содержание хлорофилла, соотношение коли­чества электролитов в надземной и подземной частях растения, оценка изменчивости изоферментного состава и др.

15. Основная задача процесса хранения зерновых культур – обеспечение сохранности их количественных и качественных показателей. Перед тем, как зерно будет заложено на хранение, оно должно быть правильно подготовлено. В противном случае, его сохранность не смогут обеспечить даже зернохранилища, построенные в соответствие со всеми современными требованиями. Хранение зерна семенного назначения – один из важнейших вопросов для аграриев. Семена, которые только что убраны, ещё не обладают хорошими посевными качествами, им нужно послеуборочное дозревание, на которое может потребоваться от нескольких недель до несколько месяцев – конкретное время зависит от сорта и культуры зерна. Озимые культуры, например, дозревают довольно быстро, а некоторые яровые наоборот имеют долгий период дозревания. Чтобы ускорить этот процесс, необходимо выполнение некоторых условий: температура хранения должна соответствовать диапазону +20..+30 С; должно быть обеспечено небольшое воздушное пространство между зернами с возможностью доступа кислорода; влажность зерна должна соответствовать 13-14%. Такие условия повышают всхожесть зерновых и энергию прорастания, что позволяет улучшить посевные качества зерна. Сушка зерна так же имеет важное значение для его качественных показателей. Во время процесса необходимо строго соблюдать технологию сушки, поэтому рекомендуется производить эту процедуру, используя специальное оборудования – зерносушилки. Зернохранилища Хранят зерновые в специализированных зернохранилищ... 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]