Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Органическая химия.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
261.18 Кб
Скачать

Изменение белков при термической обработке.

При термической обработке происходит денатурация белка т.е потерю белками их естественных свойств (растворимости, гидрофильности и др.) вследствие нарушения пространственной структуры их молекул. Четвертичная, третичная и вторичная структура белков разрушается, а первичная - это последовательность аминокислотных остатков остаётся.

Организация структуры молекулы белка. Цветные реакции белков.

Состоят из 4 структур:

Первичная структура(цепочка)- это последовательность расположения аминокислотных остатков в полипептидной цепи. Аминокислоты соединяются в полипептид с помощью ковалентных (амидных) связей.

Вторичная структура (спираль)- это упорядоченное строение полипептидных цепей, обусловленное водородными связями между группами С=О и N-H разных аминокислот.

Третичная структура (глобула, шар)- большинство белков имеют весьма компактную структуру, которая определяется формой, размером и полярностью аминокислотных радикалов, а также последовательностью аминокислот.

Четвертичная структура (соединение нескольких молекул третичной структуры в сложный комплекс)- взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру.

Цветные реакции

Присутствие белка в биологических объектах или растворах можно обнаружить с помощью цветных реакций, которые обусловлены наличием аминокислот в белке, их специфическими группами или пептидными группами.

  • Ксантопротеиновая–происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождаю- щеееся появлением желтой окраски;

  • Биуретовая – происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди(II) с образованием комплексных соединений между ионами Cu2+ и полипептидами. Реакция сопровождается появлением фиолетово–синей окраски;

  • при нагревании белков со щелочью в присутствии солей свинца выпадает черный осадок, который содержит серу.

Белки: биологическое значение классификация, физические свойства.

Белки – это биополимеры, состоящие из остатков α-аминокислот, соединённых между собой пептидными связями (-CO-NH-).  Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот.

Физические свойства

Свойства белков весьма разнообразны,  которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит измене- ние вторичной, третичной и четвертичной структур белковой макромолекулы, то есть  ее нативной пространственной структуры. Первичная структура, а следователь- но, и химический состав белка не меняются. Изменяются физические свойства: сни- жается растворимость, способность к гидратации, теряется биологическая актив-ность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатура- ция белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пи- щевого сырья,полуфабрикатов, а иногда и готовых продуктов. Особую роль про- цессы тепловой денатурации играют при бланшировании растительного сырья, суш- ке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических  реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

 

Качественные реакции на белки:

а) При горении белка – запах палёных перьев.

б) Белок +HNO3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO4 → фиолетовая окраска

 

Гидролиз

Белок + Н2О → смесь аминокислот

Функции белков в природе:

  ·   каталитические (ферменты);

  ·    регуляторные (гормоны);

  ·    структурные (кератин шерсти, фиброин шелка, коллаген);

  ·    двигательные (актин, миозин);

  ·    транспортные (гемоглобин);

  ·    запасные (казеин, яичный альбумин);

  ·    защитные (иммуноглобулины) и т.д.

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание бел- ка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности бел- ковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), амин- ные (NH2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидрат- ная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектричес- кой точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяют- ся, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность ме- няется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не текучи, упруги, обладают плас-тичностью, определенной механической прочностью, способны сохранять свою фор- му. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (нап- ример, белки молока), образуя растворы с невысокой концентрацией. Гидрофильные свойства белков имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма– полужидкое содержимое клетки. Сильно гидратированный студень–сырая клейковина, выделенная из пшеничного теста, она содержит до 65% воды. Гидрофильность, главное качество зерна пшеницы, белков зерна и муки играет боль- шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое полу- чают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Пенообразование

Процесс пенообразования–это способность белков образовывать высококонцент- рированные системы «жидкость–газ»,называемые пенами. Устойчивость пены, в ко- торой белок является пенообразователем, зависит не только от его природы и от кон- цнтрации,но и от температуры. Белки в качестве пенообразователей широко используются в кондитерской промышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые свойства.

Горение

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Аминокислоты.

Аминокислотами называются азотосодержащие органические вещества, молекулы которых содержат карбоксильную группу – COOH и аминогруппу – NH2.

NH2 –CH2 –COOH               NH2 –CH2 –CH2 –COOH

аминоуксусная кислота       β-аминопропиновая кислота

CH3-CH-COOH  α-аминопропиновая кислота           |          NH2

 

Физические свойства

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

Химические свойства

1. Кислотные свойства

а) Взаимодействие со щелочами

NH2 –CH2 –COOH + NaOH →NH2 –CH2 –COONa + H2O

б) Взаимодействие со спиртами

NH2 –CH2 –COOH + C2H5OH →NH2 –CH2 –COOC2H5 + H2O

2. Основные свойства

Взаимодействие с кислотами

NH2 –CH2 –COOH + HCl → NH3Cl–CH2 –COOH

Аминокислоты – амфотерные вещества.

3. Аминокислоты взаимодействуют друг с другом

NH2 –CH2 –COOH + NH2 –CH2 –COOH → NH2 –CH2 –CO-NH–CH2 –COOH + Н2О

                                                                                             дипептид

-СО–NH – пептидная группа (амидная группа)

Применение

Аминокислоты, преимущественно α-аминокислоты, необходимы для синтеза белков в живых организмах. Нужные для этого аминокислоты человек и животные получают в виде пищи, содержащей различные белки. Последние подвергаются в пищеварительном тракте расщеплению на отдельные аминокислоты, из которых затем синтезируются белки, свойственные данному организму. Некоторые аминокислоты применяются в медицинских целях. Многие аминокислоты служат для подкормки животных.

Производные аминокислот используются для синтеза волокна, например капрона.

Целлюлоза (клетчатка)

Целлюлоза (C 6 H 10 O 5 ) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток. 2. Отсюда происходит и ее название (от лат. «целлула» – клетка). 3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом. 4. Волокна хлопка содержат до 98 % целлюлозы. 5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %. 6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы. 7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага. 8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

(C6H10O5)n + nН2О → nС6Н12О6

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

6Н7О2(ОН)3)n + 3nCH3COOH → 3nH2O + (С6Н7О2(ОCOCH3)3)n

                                                                            триацетат целлюлозы

Ацетаты целлюлозы – искусственные полимеры,  применяются в производстве   ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Нахождение целлюлозы в природе. 1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна. 2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон. 3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити. 4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении. Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах: 1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может; 2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

Углеводы

Углеводами называют природные органические соединения, имеющие, как правило, общую формулу СmН2nОnm2O )n), где т и n і 3. Исключение составляют дезоксисахара, которые имеют общую формулу СmН2п+2On.

В зависимости от способности к гидролизу все углеводы делятся на:

моносахариды  углеводы, молекулы которых не подвержены гидролизу;

дисахариды— углеводы, из молекул которых при гидролизе образуется от двух до десяти одинаковых или различных моносахаридов;

полисахариды — углеводы, из молекул которых при гидролизе образуется от десятков тысяч и выше одинаковых или различных моносахаридов.

Углеводы — распространенный в природе класс органических соединений.

В растениях углеводы образуются в результате реакции фотосинтеза из CO2 и Н2О:

Крахмал

Целлюлоза (C 6 H 10 O 5 ) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток. 2. Отсюда происходит и ее название (от лат. «целлула» – клетка). 3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом. 4. Волокна хлопка содержат до 98 % целлюлозы. 5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %. 6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы. 7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага. 8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

(C6H10O5)n + nН2О → nС6Н12О6

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

6Н7О2(ОН)3)n + 3nCH3COOH → 3nH2O + (С6Н7О2(ОCOCH3)3)n

                                                                            триацетат целлюлозы

Ацетаты целлюлозы – искусственные полимеры,  применяются в производстве   ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Нахождение целлюлозы в природе. 1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна. 2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон. 3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити. 4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении. Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах: 1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может; 2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

Дисахариды

К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.

По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.

При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил.

Мальтоза – резервный олигосахарид – обнаружена во многих растениях в небольших количествах, в больших количествах накапливается в солоде – обычно в семенах ячменя, проросших в определенных условиях. Поэтому мальтозу часто называют солодовым сахаром. Мальтоза образуется в растительных и животных организмах в результате гидролиза крахмала под действием амилаз.

Мальтоза содержит два остатка Д-глюкопиранозы, соединенных между собой a(1®4)гликозидной связью.

Мальтоза обладает восстанавливающими свойствами, что используется при ее количественном определении. Она легко растворима в воде. Раствор обнаруживает мутаротацию.

Под действием фермента a-глюкозидазы (мальтазы) солодовый сахар гидролизуется с образованием двух молекул глюкозы:

Мальтоза сбраживается дрожжами. Эта способность мальтозы используется в технологии бродильных производств при производстве пива, спирта этилового и т.д. из крахмалсодержащего сырья.

Лактоза – резервный дисахарид (молочный сахар) – содержится в молоке (4-5%) и получается в сыроваренной промышленности из молочной сыворотки после отделения творога. Сбраживается лишь особыми лактозными дрожжами, содержащимися в кефире и кумысе. Лактоза построена из остатков b-Д-галактопиранозы и a-Д-глюкопиранозы, соединенных между собой b-(1→4)-гликозидной связью. Лактоза является восстанавливающим дисахаридом, причем свободный полуацетальный гидроксил принадлежит остатку глюкозы, а кислородный мостик связывает первый углеродный атом остатка галактозы с четвертым атомом углерода остатка глюкозы.

Лактоза гидролизуется под действием фермента b-галактозидазы (лактазы):

Лактоза отличается от других сахаров отсутствием гигроскопичности – она не отсыревает. Молочный сахар применяется как фармацевтический препарат и как питательное средство для грудных детей. Водные растворы лактозы мутаротируют, лактоза имеет в 4-5 раз менее сладкий вкус, чем сахароза.

Содержание лактозы в женском молоке достигает 8%. Из женского молока выделено более 10 олигосахаридов, структурным фрагментом которых служит лактоза. Эти олигосахариды имеют большое значение для формирования кишечной флоры новорожденных, некоторые из них подавляют рост болезнетворных кишечных бактерий, в частности – лактулоза.

Сахароза (тростниковый сахар, свекловичный сахар) – это резервный дисахарид – чрезвычайно широко распространена в растениях, особенно много ее в корнеплодах свеклы (от 14 до 20%), а также в стеблях сахарного тростника (от 14 до 25%). Сахароза является транспортным сахаром, в виде которого углерод и энергия транспортируются по растению. Именно в виде сахарозы углеводы перемещаются из мест синтеза (листья) к месту, где они откладываются в запас (плоды, корнеплоды, семена).

Сахароза состоит из a-Д-глюкопиранозы и b-Д-фруктофуранозы, соединенных a-1→b-2-связью за счет гликозидных гидроксилов:

Сахароза не содержит свободного полуацетального гидроксила, поэтому она не способна к окси-оксо-таутомерии и является невосстанавливающим дисахаридом.

При нагревании с кислотами или под действием ферментов a-глюкозидазы и b-фруктофуранозидазы (инвертазы) сахароза гидролизуется с образованием смеси равных количеств глюкозы и фруктозы, которая называется инвертным сахаром.

Изменение дисахаридов при нагревании

Поскольку связь между остатками моносахаридов в сахарозе образована за счёт обоих гликозидных гидроксилов, она не обладает восстановительными свойствами и не даёт реакции «серебряного зеркала». У сахарозы сохраняются свойства многоатомных спиртов: она образует растворимые в воде сахараты с гидроксидами металлов, в частности, с гидроксидом кальция. Эта реакция используется для выделения и очистки сахарозы на сахарных заводах. При нагревании водного раствора сахарозы в присутствии сильных кислот или под действием фермента инвертазы происходит гидролиз этого дисахарида с образованием смеси равных количеств глюкозы и фруктозы. Эта реакция обратна процессу образования сахарозы из моносахаридов:

Полученная смесь называется инвертным сахаром и используется для производства карамели, подслащивания пищевых продуктов, для предотвращения кристаллизации сахарозы, получения искусственного мёда, производства многоатомных спиртов.

Моносахариды

Моносахариды это простые углеводы, не подвергающиеся гидролизу. Они могут иметь 4,5,6 и т.д. атомов углерода, среди них чаще всего встречаются в природе соединения состава С5Н10О5(пентозы) и СбН12О6 (гексозы). По характеру функциональных групп моносахариды могут быть альдозами или кетозами, в то же время все они являются многоатомными спиртами. Важнейшие из них: рибоза, ксилоза, глюкоза, фруктоза, галактоза. В кристаллическом виде моносахариды имеют циклическое строение, они являются внутренними циклическими полуацеталями, образованными в результате внутримолекулярного взаимодействия карбонильной группы с одной из спиртовых групп.

Физические свойства моносахаридов

Моносахариды являются твердыми кристаллическими веществами. Все они гигроскопичны, хорошо растворимы в воде, легко образуют сиропы. Растворимость моноз в спирте низкая, в эфире они практически нерастворимы. Растворы моносахаридов имеют нейтральную реакцию по лакмусу и обычно обладают сладким вкусом. Сладость разных моноз различна. Например, фруктоза приблизительно в три раза слаще глюкозы. Растворы моносахаридов обладают оптической активностью, для них характерно явление мутаротации.

Химические свойства моносахаридов

В соответствии с химическим строением моносахариды могут проявлять свойства карбонильных соединений (альдегидов и кетонов), спиртов и полуацеталей.

Брожение сахаров

Брожение - это сложный процесс расщепления моносахаридов с выделением СО2 под действием ферментов. Брожению подвергаются сахара, у которых число атомов углерода кратно трем (гексозы).

Брожение гексоз различной конфигурации происходит с неодинаковой легкостью. Существуют и другие виды брожения.

Процессы брожения сахаров играют важную роль и широко используются в промышленности.

Различают разные виды брожения:

Жиры

Жиры  сложные эфиры трёхатомного спирта глицерина и высших карбоновых кислот.

Физические свойства

Жиры – легкоплавкие вещества, легче воды, нерастворимы в воде, растворимы в органических растворителях, имеют низкую теплопроводность. Животные жиры – твёрдые, растительные жиры (масла) – жидкие. В состав животных жиров входят преимущественно насыщенные кислоты: стеариновая С17Н35СООН, пальмитиновая С15Н31СООН, в состав растительных масел входят ненасыщенные кислоты: олеиновая С17Н33СООН, линолевая С17Н31СООН.

При комнатной температуре жиры (смеси триглицеридов) – твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды. Консистенция жиров зависит от их состава: в твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления; для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления. Причиной снижения температуры плавления триглицеридов с остатками ненасыщенных кислот является наличие в них двойных связей с цис-конфигурацией. Это приводит к существенному изгибу углеродной цепи, нарушающему упорядоченную (параллельную) укладку длинноцепных радикалов кислот.  Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях – эфире, бензоле, хлороформе, бензине.

Химические свойства

1. Гидролиз жиров. Жиры гидролизуются с образованием глицерина и карбоновых кислот:

2. Гидрирование масел. Жидкие растительные масла превращаются в твёрдые

3. Получение мыла. Мыла – соли щелочных металлов высших карбоновых кислот.

Применение - жиры – ценный продукт питания, служат для получения глицерина, карбоновых кислот, мыла, гидрированный жир служит для получения маргарина.

Жиры в природе. Жиры входят в состав животных и растительных организмов, служат источником энергии. При пищеварении жиры под действием ферментов распадаются на глицерин и карбоновые кислоты.

Виды порчи жиров

Некоторые стадии и формы порчи жиров, особенно начальные, не сопровождаются выраженными органолептическими изменениями. Такие жиры иногда могут использоваться в питании. Вместе с таким жиром поступают и продукты начальной его порчи, которые небезразличны для организма.

В основе порчи жиров лежат изменения, связанные с окислением жиров, возникающим под влиянием различных физических, химических и биологических факторов (действие кислорода воздуха, температуры, света, ферментов и др.).

В числе теорий, объясняющих порчу жиров в результате окисления, наибольшего внимания заслуживает радикально-цепная теория, согласно которой в первичной стадии окисления жира отмечается образование высокоактивных перекисных радикалов, гидроперекисей и свободных радикалов. Гидроперекиси не имеют ни вкуса, ни запаха, связи с чем в первичной стадии окисления не возникает каких-либо органолептических изменений жира.

В дальнейшем жирнокислотные перекиси вследствие своей высокой реакционной активности реагируют с образованием свободных радикалов, которые взаимодействуют с новыми молекулами кислорода и вступают в реакции с другими молекулами жирных кислот и глицеридов. На этих стадиях окисления образуются низкомолекулярные продукты разложения, альдегиды, кетоны, свободные кислоты и др., которые воспринимаются органолептически как прогоркание жира (неприятный запах и вкус). Под влиянием окисления жира и его порчи отмечается увеличение кислотного числа, перекисных и ацетильных чисел.

Перегревание жиров (200—300° в течение более или менее длительного времени) приводит к возникновению в них изменений, сходных с изменениями при окислении и прогоркании жиров. При перегревании, так же как и при окислении жиров, в них образуются низкомолекуляряые жирные кислоты, высокоактивные перекисные радикалы, гидроперекиси, эпоксиды и другие агрессивные вещества.

Существенные изменения возникают во фритюрном жире при приготовлении пирожков и других мучных изделий

Помимо образования агрессивных перекисей и эпоксидов, снижается биологическая активность перегретых жиров. Так, прогревание подсолнечного масла при температуре 200° в течение 5 1/2 ч приводит к потере 10% первоначального содержания линолавой кислоты. Прогревание масла при 250° в течение того же срока влечет за собой потерю 40% линолевой кислоты. При перегревании жиров разрушаются фосфатиды и витамины, в том числе и те, которыми обогащаются современные маргарины, кулинарные жиры, рафинированные растительные масла.

Изменение жиров при тепловой обработке

При свободном доступе воздуха происходит окисление жиров, которое ускоряется с повышением их температуры. При температуре хранения (от 2 до 25о С.) в жире происходит автоокисление, при температуре жарки (от 140 до 200о С.) – термическое окисление.

Между автоокислением и термическим окислением есть много общего, но состав образующихся продуктов может различаться.

Первичными продуктами автокатализации цепной реакции является гидроперекиси, склонные к реакциям распада.

Продукты, образующие при авто и термическом окислении делятся на три группы:

1) Продукты окислительной деструкции жирных кислот, в результате которых образуются вещества с укороченной цепью.

2) Продукты изомеризации, а также окисленные триглецириды.

3) Продукты окисления содержащие полимеризованные жирные кислоты.

Кроме того, продукты окисления жиров принято делить на термостойкие и нетермостойкие.

Помимо окислительных изменений, при любом способе тепловой обработки в жирах происходят гидромеханические процессы, обусловленные воздействием на жир водой и высокой температурой.

Преобладание в жире этих процессов зависит от интенсивности воздействия на него температуры, кислорода воздуха и воды, продолжительности нагревания и присутствия веществ, ускоряющих или замедляющих эти процессы

Сложные эфиры

Сложные эфиры - продукты замещения атомов водорода гидроксильной группы карбоновых и минеральных кислот на карбоновый радикал. Различают моно-, ди- и полиэфиры. Для одноосновных кислот существуют моноэфиры, двух- и многоосновных кислот - полные и кислые эфиры. Название эфира состоит из названия кислоты и спирта, участвующих в его образовании. Для наименования эфиров часто используют тривиальную или историческую номенклатуру. Согласно номенклатуре ИЮПАК названия эфиров образуются так: берут в виде радикала название спирта, добавляют наименование кислоты как углеводорода и окончание -оат. Например, структурные формулы эфиров (изомеры и метамеры), соответствующие молекулярной формуле С4Н802, по разным номенклатурам называются так: пропилформиат (пропилметаноат), изопропилформиат (изоприпилметаноат), этилацетат (этилетаноат), мелпропионат (метилпропаноат). Получение сложных эфиров. Данные соединения широко распространены в природе. Так, эфиры низкомолекулярных и средних карбоновых кислот гомологического ряда являются частью эфирных масел многих растений (например, уксусноизоамиловый эфир, или «грушевая эссенция», которая входит в состав груш и многих цветов), а эфиры глицерола и высших жирных кислот – химической основой всех жиров и масел. Некоторые сложные эфиры получают синтетическим путем. Реакция этерификации происходит в результате взаимодействия карбоновых (и минеральных) кислот со спиртами. В качестве катализатора выступает сильная минеральная кислота (чаще всего используют H2S04). Катализатор активирует молекулу карбоновые кислоты. Скорость реакции этерификации зависит также и от того, с каким атомом углерода связана ОН-группа (первичным, вторичным или третичным), от химической природы кислоты и спирта, а также структуры углеводородной цепи, которая связана с карбоксилом. Гидролиз сложных эфиров. Реакция гидролиза (омыления) сложных эфиров – это оборотная реакция этерификации. Проходит она медленно. Если добавить к реакционной смеси смесь минеральных кислот или щелочей, ее скорость увеличивается. Омыление щелочами происходит в тысячу раз быстрее, чем кислотами. Сложные эфиры гидролизируются в щелочной среде, а простые эфиры – в кислой. При нагревании сложных эфиров со спиртами в присутствии сульфатной кислоты или алкоголятов (в щелочной среде) происходит обмен алкоксигруппами. При этом образуется новый эфир, а в реакционную среду возвращается спирт, который раньше входил в виде остатков в состав молекулы эфира. Сложные эфиры: реакция восстановления. Восстановителями чаще всего бывают алюмогидраты лития, натрия в кипящем спирте. Высокую стойкость эфиров к действию разных окислителей используют в химическом синтезе или анализе для защиты спиртовых и фенольных групп. Сложные эфиры: основные представители. Этилэтаноат (уксусноэтиловый эфир) получают вследствие реакции этерификации ацетатной кислоты и этанола (катализатор сульфатная кислота). Этилэтаноат используют в качестве растворителя нитрата целлюлозы в производстве бездымного пороха, фото- и кинопленки, компонент фруктовых эссенций для пищевой промышленности. Изоамилэтаноат (уксусноизоамиловый эфир, «грушевая эссенция») хорошо растворим в этаноле, диэтиловом эфире. Получают этерификацией ацетатной кислоты и изоамилового спирта. Изоамилметилбутаноат используют в качестве ароматического компонента в парфюмерии и как растворитель. Изоамилизовалериат («яблочная» эссенция, изовалериановоизоамиловый эфир) получают реакцией этерификации изовалериановой кислоты и изоамилового спирта. Указанный эфир используется в качестве фруктовой эссенции в пищевой промышленности.

Карбоновые кислоты

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов - карбоксильную функциональную группу. Она имеет вид -СООН. Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R - это частица-радикал, которая может включать любое количество атомов углерода. Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты - это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН - карбоксильные группы. То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород - самый электроотрицательный в группе. От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия. Поэтому кислоты в соответствующих индикаторах дают подобную реакцию: фенолфталеин - бесцветный; лакмус - красный; универсальный - красный; метилоранжевый - красный и прочие. Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях. Классификация Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них - это природа радикала. По этому фактору выделяют: Алициклические кислоты. Пример: хинная. Ароматические. Пример: бензойная. Алифатические. Пример: уксусная, акриловая, щавелевая и прочие. Гетероциклические. Пример: никотиновая. Если говорить о связях в молекуле, то также можно выделить две группы кислот: предельные - все связи только одинарные; непредельные - в наличии двойные, одна или несколько. Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории. Одноосновные - только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие. Двухосновные - соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие. Многоосновные - лимонная, молочная и прочие. Далее в данной статье речь пойдет только о предельных одноосновных карбоновых кислотах алифатического ряда.

Физические свойства Сегодня подробно изучены все их представители. Для каждого из них можно найти характеристику по всем параметрам, включая применение в промышленности и нахождение в природе. Мы рассмотрим, что собой представляют карбоновые кислоты, физические свойства их и другие параметры. Итак, можно выделить несколько основных характерных параметров. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости. Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные. Плотность первых двух представителей превышает единицу. Все остальные легче воды. Температура кипения: чем больше цепь, тем выше показатель. Чем более разветвленная структура, тем ниже. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже. В воде растворяются очень хорошо. Способны образовывать прочные водородные связи. Такие особенности объясняются симметрией строения, а значит, и строением кристаллической решетки, ее прочностью. Чем более простые и структурированные молекулы, тем выше показатели, которые дают карбоновые кислоты. Физические свойства данных соединений позволяют определять области и способы использования их в промышленности. Химические свойства Как мы уже обозначали выше, данные кислоты могут проявлять свойства разные. Реакции с их участием важны для промышленного синтеза многих соединений. Обозначим самые главные химические свойства, которые может проявлять одноосновная карбоновая кислота. Диссоциация: R-COOH = RCOO- + H+. Проявляет кислотные свойства, то есть взаимодействует с основными оксидами, а также их гидроксидами. С простыми металлами взаимодействует по стандартной схеме (то есть только с теми, что стоят до водорода в ряду напряжений). С более сильными кислотами (неорганические) ведет себя как основание. Способна восстанавливаться до первичного спирта. Особая реакция - этерификации. Это взаимодействие со спиртами с образованием сложного продукта - эфира. Реакция декарбоксилирования, то есть отщепления от соединения молекулы углекислого газа. Способна взаимодействовать с галогенидами таких элементов, как фосфор и сера. Очевидно, насколько многогранны карбоновые кислоты. Физические свойства, как и химические, достаточно разнообразны. Кроме того, следует сказать, что в целом по силе как кислоты все органические молекулы достаточно слабы по сравнению со своими неорганическими коллегами. Их константы диссоциации не превышают показателя 4,8. Способы получения Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты. 1. В лаборатории это делают окислением: спиртов; альдегидов; алкинов; алкилбензолов; деструкцией алкенов. 2. Гидролиз: сложных эфиров; нитрилов; амидов; тригалогеналканов. 3. Декарбоксилирование - отщепление молекулы СО2. 4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов. 5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты. Основные соединения предельных карбоновых кислот: соли Соли карбоновых кислот - важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с: металлами; основными оксидами; амфотерными оксидами; щелочами; амфотерными гидроксидами. Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами - пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия - мыла, жидкие и твердые. Мыла Так, если речь идет о подобной реакции: 2C17H35-COOH + 2Na = 2C17H35COONa + H2, то образующийся продукт - стеарат натрия - это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья. Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия - жидкое мыло для мытья рук. Поэтому можно с уверенностью заявлять, что соли карбоновых кислот - это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах. Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы. Эфиры карбоновых кислот Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс сложных эфиров. Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий - реакции этерификации. Общий вид можно представить уравнением: R,-COOH + R"-OH = R,-COOR" + H2O. Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения. Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды. Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира. Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как: пищевые добавки; ароматические добавки; составной компонент парфюма; растворители; компоненты лаков, красок, пластмасс; медикаментов и прочее. Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности. Этановая кислота (уксусная) Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее - СН3СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки. Она является пищевой добавкой под кодом Е-260. Используется в пищевой промышленности для консервации. Применяется в медицине для синтеза лекарственных средств. Компонент при получении душистых соединений. Растворитель. Участник процесса книгопечатания, крашения тканей. Необходимый компонент в реакциях химических синтезов множества веществ. В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной. Муравьиная кислота Самый первый и простой представитель данного класса. Формула - НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники: муравьи и пчелы; крапива; хвоя; фрукты. Основные области использования: для консервации и подготовки животного корма; применяется для борьбы с паразитами; для крашения тканей, протравки деталей; как растворитель; отбеливатель; в медицине - для дезинфекции приборов и оборудования; для получения монооксида углерода в лаборатории. Также в хирургии растворы данной кислоты используют как антисептические средства

Альдегиды

Альдегиды – органические вещества, содержащие альдегидную функциональную группу    (или –СНО), соединённую с углеводородным радикалом.

Общая формула альдегидов:

Гомологический ряд

НСНО метаналь, формальдегид

СН3СНО этаналь, ацетальдегид

С2Н5СНО пропаналь

С3Н7СНО бутаналь

Физические свойства,  применение

Формальдегид – газ с характерным запахом, ядовит, его 40% раствор называется формалином. Применяется в медицине для дезинфекции, получения пластмасс. Ацетальдегид – жидкость, растворимая в воде, ядовита, применяется для получения пластмасс, этанола, уксусной кислоты.

Химические свойства

1. Реакция «серебряного зеркала»- качественная реакция на альдегиды

СН3СНО + Ag2O → CH3COOH + 2Ag

ацетальдегид уксусная кислота

2. Окисление  гидроксидом меди – качественная реакция на альдегиды – образование кирпично-красного осадка Cu2O

СН3СНО + Cu(OH)2 → CH3COOH + Cu2O + 2H2O

3. Восстановление водородом (получение спирта)

СН3СНО + H2 → CH3CH2OH  

Получение

1. Окисление спиртов

R–CH2 –OH +CuO → R-CHO + Cu + H2O

2. Гидратация ацетилена

H–С≡C–H + H2O → CH3CHO

Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

К ним относятся:

алканы СН3 – СН2 – СН2 – СН3

Алкены СН = СН – СН2 – СН3

Алкины СН = С – СН2 – СН3

Алкадиены СН2 = СН – СН = СН2

II Циклические соединения, которые в свою очередь делятся на карбоциклические и гетероциклические.

Карбоциклические соединения- это соединения в которых углеродная цепь замкнута в цикл (кольцо). Они в свою очередь подразделяются на алициклические и ароматические. Примером алициклических углеводородов является циклогексан, а ароматических – бензол.

Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Название класса органического соединения

Общая формула

Название функциональной группы

Галогенопроизвоные

СН3 - Сl

галоген

Спирты

СН3 - ОН

гидроксильная

Фенолы

С6Н5ОН

гидроксильная

Простые эфиры

СН3 – О – СН3

алкоксильная

Амины

СН3 – NH2

аминогруппа

Нитросоединения

СН3 – NО2

нитрогруппа

Альдегиды

СН3 – С=О Н

альдегидная

Кетоны

СН3 – С - О

карбонильная

Карбоновые кислоты

СН3 - СООН

карбоксильная

Алканы

Алканы – это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С18-С35 с особой инертностью. Общие сведения об алканах и их радикалах Их формула: СnР2n+2, здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: СnР2n+1, здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения: связь С-С характеризуется длиной 0,154 нм; связь С-Н характеризуется длиной 0,109 нм; валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут. Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее. Физические свойства алканов Алканы – это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН4-С4Н10 представляют собой газы, у которых отсутствует также и запах. С5Н12-С15Н32 – это жидкости, которые обладают специфическим запахом. С15Н32 и так далее – это твердые вещества, которые также не имеют запаха. Химические свойства алканов Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения. Реакции нитрования Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH4 + азотная кислота (разбавленная) = CH3 – NO2 (нитрометан) + вода. Реакции горения Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: СnР2n+2 + ((3n+1)/2) O2 = (n+1) H2O + n СО2. Реакции окисления В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества: 1) 2СН4 (окисление кислородом) = 2СН3ОН (спирт – метанол). 2) СН4 (окисление кислородом) = СН2О (альдегид – метаналь или формальдегид) + Н2О. 3) 2СН4 (окисление кислородом) = 2НСООН (карбоновая кислота – метановая или муравьиная) + 2Н2О. Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот. Отношение к нагреванию При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции – изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов): 1) 2СН4 = С2Н4 (этен) + 2Н2. 2) 2СН4 = С2Н2 (этин) + 3Н2. 3) С7Н16 (нормальный гептан) = С6Н5 – СН3 (толуол) + 4Н2. Реакции галогенирования Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют. Реакции сульфохлорирования Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R–H + SO2 + Cl2 + ультрафиолетовое излучение = R–SO2Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ

Спирты

Спирты - производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH.  Все спирты делятся на одноатомные и многоатомные