Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций - Теор-е и методол- е проблемы психологии развития.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.12 Mб
Скачать

3. Существует ли взаимосвязь между отдельными данными в имеющейся совокупности и каковы характер и сила этих связей?

Для решения этого вопроса необходимо вычислить меры связи (корреляции). Меры связи выявляют соотношения между двумя переменными. Эти связи вычисляют с помощью коэффициентов корреляции.

- коэффициент корреляции Карла Пирсона вычисляется путём нормирования ковариации переменных на произведение их среднеквадратических отклонений:

rxy=(∑(xср-xi)(yср-yyi)/√∑(xср-xi)2∑(yср-yyi)2.

Значение коэффициента может варьировать от -1 до +1.

- коэффициент ранговой корреляции Чарльза Эдварда Спирмена:

rs=1-6*∑d2/(N(N2-1))

Его полученное значение необходимо сравнить с табличным (в справочниках, учебниках по статистике, специальных изданиях и др.).

3.2. Виды количественного анализа данных

Статистический анализ данных, входящий в процедуру обработки результатов исследования включает в себя, кроме указанного, следующее.

1. Дисперсионный анализ (ДА). В отличие от корреляционного, может выявлять зависимость между двумя, тремя и т.д. переменными. Изменения изучаемого признака могут быть вызваны как несколькими переменными, так и их взаимодействием, что может выявить ДА.

2. Факторный анализ. Позволяет снизить размерность пространства данных, т.е. обоснованно уменьшить количество измеряемых признаков за счёт их объединения в некоторые совокупности (факторы). Основой анализа является матрица корреляций, т.е. таблицы коэффициентов корреляции каждого признака со всеми остальными. В зависимости от числа факторов в корреляционной матрице различают:

- однофакторный (по Спирмену);

- бифакторный (по Холзингеру);

- многофакторный (по Терстону.

Весьма сложный математический и логический аппараты факторного анализа часто затрудняют выбор адекватного задачам исследования варианта метода.

3. Регрессионный анализ. Метод позволяет изучать зависимость среднего значения одной величины от вариации другой (других) величины. Специфика метода заключается в том, что хотя бы одна из рассматриваемых величин носит случайный характер. Тогда описание зависимости распадается на две задачи: 1) выявление общего вида зависимости и 2) уточнение путём вычисления оценок параметров зависимости. Решение первой задачи – дело мастерства и интуиции исследователя, т.к. стандартных методов её решения не существует. Решение же второй задачи по сути представляет собой нахождение аппроксимирующей кривой. Чаще всего эта аппроксимация осуществляется с помощью математического метода наименьших квадратов.

Идея этого метода принадлежит Фрэнсису Гальтону, заметившему, что у очень высоких родителей дети были несколько меньше ростом, а у очень маленьких родителей – дети более рослые. Эту закономерность он назвал регрессией.

4. Таксономический анализ. Это математический приём группировки данных в классы (таксоны, кластеры) таким образом, чтобы объекты, входящие в один класс, были более однородны по какому-либо признаку по сравнению с объектами, входящими в другие классы. В итоге появляется возможность определить в той или иной метрике расстояние между изучаемыми объектами и дать упорядоченное описание их взаимоотношений на количественном уровне. В силу недостаточной проработанности критериев эффективности и допустимости кластерных процедур данный метод рассматривается как дополнительный или дополняется другими методами, в частности, факторным анализом.