Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по электромагнитным переходным процессам (Большие).doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
6 Mб
Скачать

44)Граничные условия при однофазном кз с одновременным разрывом фазы в сети с глухозаземлённой нейтралью.

Ответ: Рассмотрим случай, когда одновременно возникают поперечная и продольная несимметрии. Пусть на каком-либо участке сети, нейтраль которой заземлена, произошел разрыв одного провода, причем один конец провода заземлился, а другой остался изолированным (рис. 8.6). Питание данного участка предполагается с обеих его сторон. Граничные условия при однофазном КЗ с разрывом фазы будут:

Основные уравнения:

Используя граничные условия (8.10) и основные уравнения (8.11), получим дополнительную связь между неизвестными токами и напряжениями прямой последовательности в местах несимметрии:

где где ХK2, ХK0 – реактивности схемы соответствующей последовательности относительно точки КЗ при разрыве схемы в точке L; XL2, XL0 – то же относительно места разрыва при отсутствии КЗ; XKL2, XKL0 – взаимные реактивности между точкой КЗ и местом разрыва в схемах соответствующих последовательностей. Придадим уравнениям (8.12) несколько иной вид, введя в правую часть каждого уравнения два одинаковых, но противоположных по знаку, слагаемых:

Из уравнения (8.12) следует, что при рассматриваемой двухкратной несимметрии расчет токов и напряжений прямой последовательности (при ранее принятых допущениях) сводится к расчету эквивалентного КЗ в некоторой точке С, связанной с точками L1 и L1 схемы прямой последовательности реактивными сопротивлениями XKL, (XK – XKL) и (XL – XKL), величины которых определяются реактивными сопротивлениями только схем обратной и нулевой последовательностей. Таким образом, в данном случае соблюдается правило эквивалентности прямой последовательности со всеми вытекающими из него следствиями. Следует отметить, что при расчетах за положительное направление тока ILA1 принято направление от места замыкания. Чтобы увязать с обычно принимаемым условием, что токи имеют положительное направление к точке КЗ, необходимо у найденного тока ILA1 изменить знак. Напряжение прямой последовательности в месте КЗ относительно нулевого провода и относительно оборванного конца фазы (ΔULA1) определяются суммой соответствующих падений напряжений в схеме. Остальные симметричные составляющие токов и напряжений в

обоих местах несимметрии определяются из соотношений, которые вытекают из граничных условий и уравнений связи (8.2) и (8.3). Распределение токов и напряжений находят с использованием принципа наложения. Если приведенные ЭДС источников равны между собой, и параметры прямой и обратной последовательностей принять одинаковыми, то для определения тока прямой последовательности в месте КЗ при одновременном разрыве той же фазы с одной стороны можно получить расчетное выражение

где Х(1) = 2Х1 + Х0 – результирующая реактивность при однофазном КЗ в точке К и отсутствии разрыва фазы в точке L;

где ХL1 и XKL1 – то же, что ранее XL2 и XKL2.

45)Нагрев проводников током кз. Термический спад тока кз.

Ответ: При КЗ активное сопротивление проводов увеличивается за счет нагрева их током КЗ, что вызывает уменьшение тока. Уменьшение тока вызывает увеличение времени работы зависимых максимальных защит: при малой чувствительности в принципе возможен возврат защиты. Подробный анализ и обоснование метода учета этого явления рекомендуется выполнять расчет с помощью диаграммы, приведенной на  рис. 13.2.

Рис. 13.2. Диаграмма для учёта теплового спада тока  короткого замыкания.

На диаграмме принята начальная температура θ065 °C, тепловой коэффициент a для меди и алюминия 0,0041/°C, для стали 0,0045/°C. Сплошные линии на диаграмме предназначены для медных и алюминиевых проводов, пунктирные – для стальных. Для стальных проводов расчет дает лишь ориентировочные значения. Пользование кривыми поясняется примером. На этой диаграмме по оси абсцисс отложена величина Δ (I(3)/qt, где q – сечение провода, мм²; t – время прохождения тока, с.; I(3) – ток трехфазного КЗ в начальный момент. По оси ординат отложена величина ne – коэффициент теплового спада тока от нагрева проводов. Кривые θ дают температуру провода, °C;  , (13.13) где rxz – сопротивления цепи КЗ.

Пример 13.2. Ток КЗ на шинах питающей подстанции 10 кА при напряжении 6,6 кВ. Выполнить расчет спадания тока через 1, 2, 3 с для медного кабеля сечением  50 мм², длиной 5 км. Решение. Определим активное сопротивление кабеля при температуре 65 ºC. По приложению [17] активное сопротивление медного кабеля 50 ммпри температуре +20 ºC равно 0,37 Ом/км. При температуре 65 ºC сопротивление будет 0,37 [1 +  + 0,004(65-20)] = 0,436 Ом/км. Полное активное сопротивление   Ом. Сопротивление системы   Ом. Сопротивление кабеля   Ом. Ток трехфазного КЗ в конце кабеля в первый момент

 кА. Расчет для времени t = 1 c:  . На диаграмме рис. 13.2 по шкале абсцисс для меди откладываем величину  ∆ = 1,09 104 и из этой точки восстанавливаем перпендикуляр до пересечения с кривой a. На диаграмме нет кривой для a = 0,88. Поэтому точка пересечения определяется как промежуточная между кривыми для a = 1 и a = 0,8. Точка пересечения, перенесенная на ось ординат, дает ne = 0,87 и ток 0,87 1650 = 1430 А. Температура кабеля определяется для этой же точки как промежуточная между кривыми для e = 120 °С и 140 °C, примерно 130 °C. Для времени t = 2 c: Δ = (1650/50)² 2 = 2180 А² с/мм4. Аналогичным построением определяются n0,78, ток 0,78· 1650 А и температура 180 ºC. Для времени t = 3 с: Δ = (1650/50)² 3 = 3270 А²с/мм4. Аналогичным построением определяются nе = 0,72, ток 0,72 · 1650 = 1180 А и температура 225 °С.

Рис. 13.3. Схема сети к примеру 13.2.

Как пример практического применения подобных расчетов рассмотрим схему на рис. 13.3. Кабель медный 3х50 мм² при напряжении 6 кВ допускает длительную нагрузку 200 А. Ток срабатывания защиты должен не менее чем в 4 раза превышать ток нагрузки, т. е. должен быть не менее 800 А, отстраиваться от токов самозапуска электродвигателей и обеспечивать чувствительность при резервировании не менее 1.2. Следовательно, ток срабатывания защиты (0,866 ·1650) / 1,2 = 1200 Ас кратностью к току нагрузки  1200 / 200 = 6 вполне реален. Реальна и выдержка времени 3 с и более для зависимых защит при расчетной кратности тока 1650 / 1200 = 1,2 и любых уставках по времени в независимой части. Расчет показывает, что кабель 3х50 мм² через 3 с нагреется до 225 °С при допустимых 200 °С. Это не противоречит условиям выбора выдержки времени защиты 1 по термической стойкости кабеля, так как ее время действия при КЗ в конце первого участка кабеля будет значительно меньше и кабель будет термически стоек. В данном случае при отказе защиты или выключателя 2 защита, установленная на выключателе 1, также может отказать, так как ее ток возврата 0,85 · 1200 = 1000 А, и при спадании тока двухфазного КЗ до 0,866 · 1180 = 935 А защита может вернуться, не отключив КЗ. Отсюда следует важный вывод: при больших выдержках времени резервных защит необходимо проверять чувствительность защит с учетом нагрева проводов током КЗ. Для трансформаторов рассчитать уменьшение тока по изложенной методике нельзя – неизвестно сечение провода обмоток, к тому же обмотки высшего и низшего напряжения имеют разные сечения и часто выбираются не по плотности тока, а по конструктивным соображениям. Но оценить уменьшение тока от нагрева можно по предельной температуре обмоток при КЗ для масляных трансформаторов с медными обмотками и изоляцией класса А 250 °С и для алюминиевых обмоток 200 °С. Потери короткого замыкания, по которым вычисляется активное сопротивление трансформаторов, даются для температуры обмоток 75 ºС. Следовательно, увеличение сопротивления обмоток можно определить: 250 = r75[1+0,004(250-75)] = 1,7r75. Зная 250 и считая неизменным Хт, можно определить Zт и по нему ток КЗ. Следует учитывать, что указанной температуры обмотки достигают за время прохождения тока КЗ tк. Допустимое по термической стойкости время tк определяется по выражению, приведенному в ГОСТ: tк 900/k², где k – кратность тока КЗ по отношению к номинальному току. Поскольку сопротивление энергосистемы невелико по сравнению с сопротивлением трансформатора, им практически можно пренебречь. Путем преобразований выражение, рекомендуемое ГОСТ, приводится к более удобному виду:  ;   . (13.14) Для большинства трансформаторов распределительных сетей uк = 4,5 % и  tк = 0,094,5² 1,82 с. В сетях напряжением до 1 кВ рекомендуется учитывать изменение активного сопротивления проводников короткозамкнутой цепи, в основном кабелей, вследствие их нагрева токами К3 (так называемый “тепловой спад тока К3”).